Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise-independent Route towards the Genesis of a COMPACT Ansatz for Molecular Energetics: a Dynamic Approach (2311.09895v2)

Published 16 Nov 2023 in quant-ph and physics.chem-ph

Abstract: Recent advances in quantum information and quantum science have inspired the development of various compact dynamic structured ans\"{a}tze that are expected to be realizable in the Noisy Intermediate-Scale Quantum (NISQ) devices. However, such ans\"{a}tze construction strategies hitherto developed involve considerable measurements, and thus they deviate significantly in NISQ platform from their ideal structures. Therefore, it is imperative that the usage of quantum resources must be minimized while retaining the expressivity and dynamical structure of the ansatz that can adapt itself depending on the degree of correlation. We propose a novel ansatz construction strategy based on the \textit{ab-initio} many-body perturbation theory that requires \textit{no} pre-circuit measurement and thus it remains structurally unaffected by any hardware noise. The accuracy and quantum complexity associated with the ansatz are solely dictated by a pre-defined perturbative order as desired and hence are tunable. Furthermore, the underlying perturbative structure of the ansatz construction pipeline enables us to decompose any high-rank excitation that appears in higher perturbative orders into the product of various low-rank operators, and it thus keeps the execution gate-depth to its minimum. With a number of challenging applications on strongly correlated systems, we demonstrate that our ansatz performs significantly better, both in terms of accuracy, parameter count and circuit depth, in comparison to the allied unitary coupled cluster based ans\"{a}tze.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. H. Nakatsuji, ``Equation for the direct determination of the density matrix,'' Phys. Rev. A 14, 41–50 (1976).
  2. M. Nooijen, ``Can the eigenstates of a many-body hamiltonian be represented exactly using a general two-body cluster expansion?'' Phys. Rev. Lett. 84, 2108–2111 (2000).
  3. N. P. Bauman and K. Kowalski, ``Coupled cluster downfolding theory: towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science,'' Materials Theory 6, 17 (2022).
  4. I. Shavitt and R. J. Bartlett, ``Many-body methods in chemistry and physics: Mbpt and coupled-cluster theory,''  Cambridge Molecular Science (2009), 10.1017/CBO9780511596834.
  5. Z. W. Windom, D. Claudino, and R. J. Bartlett, ``A new "gold standard": perturbative triples corrections in unitary coupled cluster theory and prospects for quantum computing,''  (2024), arXiv:2401.06036 [physics.chem-ph] .
  6. F. A. Evangelista, G. K.-L. Chan, and G. E. Scuseria, ``Exact parameterization of fermionic wave functions via unitary coupled cluster theory,'' The Journal of Chemical Physics 151, 244112 (2019), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.5133059/16659468/244112_1_online.pdf .
  7. T. Q. N. developers and contributors, ``Qiskit nature 0.6.0,''  (2023).
  8. W. J. Hehre, R. F. Stewart, and J. A. Pople, ``Self‐consistent molecular‐orbital methods. i. use of gaussian expansions of slater‐type atomic orbitals,'' The Journal of Chemical Physics 51, 2657–2664 (1969), https://doi.org/10.1063/1.1672392 .
  9. J. T. Seeley, M. J. Richard, and P. J. Love, ``The bravyi-kitaev transformation for quantum computation of electronic structure,'' The Journal of Chemical Physics 137, 224109 (2012), https://doi.org/10.1063/1.4768229 .
  10. Y. S. Yordanov, D. R. M. Arvidsson-Shukur, and C. H. W. Barnes, ``Efficient quantum circuits for quantum computational chemistry,'' Phys. Rev. A 102, 062612 (2020).
  11. I. Magoulas and F. A. Evangelista, ``Cnot-efficient circuits for arbitrary rank many-body fermionic and qubit excitations,'' Journal of Chemical Theory and Computation 19, 822–836 (2023), pMID: 36656643, https://doi.org/10.1021/acs.jctc.2c01016 .
  12. S. Halder, C. Shrikhande, and R. Maitra, ``Development of zero-noise extrapolated projective quantum algorithm for accurate evaluation of molecular energetics in noisy quantum devices,'' The Journal of Chemical Physics 159, 114115 (2023), https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0166433/18129554/114115_1_5.0166433.pdf .
  13. K. Kowalski and N. P. Bauman, ``Quantum flow algorithms for simulating many-body systems on quantum computers,'' Phys. Rev. Lett. 131, 200601 (2023).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com