Physics-informed generative model for drug-like molecule conformers (2403.07925v2)
Abstract: We present a diffusion-based, generative model for conformer generation. Our model is focused on the reproduction of bonded structure and is constructed from the associated terms traditionally found in classical force fields to ensure a physically relevant representation. Techniques in deep learning are used to infer atom typing and geometric parameters from a training set. Conformer sampling is achieved by taking advantage of recent advancements in diffusion-based generation. By training on large, synthetic data sets of diverse, drug-like molecules optimized with the semiempirical GFN2-xTB method, high accuracy is achieved for bonded parameters, exceeding that of conventional, knowledge-based methods. Results are also compared to experimental structures from the Protein Databank (PDB) and Cambridge Structural Database (CSD).
- Guo, L.; Yan, Z.; Zheng, X.; Hu, L.; Yang, Y.; Wang, J. A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy. Journal of Molecular Modeling 2014, 20
- Chastine, J. W.; Brooks, J. C.; Zhu, Y.; Owen, G. S.; Harrison, R. W.; Weber, I. T. Ammp-vis: a collaborative virtual environment for molecular modeling. Proceedings of the ACM symposium on Virtual reality software and technology. 2005; pp 8–15
- Landrum, G. et al. RDKit: Open-source cheminformatics. 2021; \urlhttps://doi.org/10.5281/zenodo.7235579, 10.5281/zenodo.3732262
- Luo, S.; Shi, C.; Xu, M.; Tang, J. Predicting Molecular Conformation via Dynamic Graph Score Matching. Advances in Neural Information Processing Systems. 2021; pp 19784–19795
- Shi, C.; Luo, S.; Xu, M.; Tang, J. Learning Gradient Fields for Molecular Conformation Generation. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9558–9568, ISSN: 2640-3498
- Xu, M.; Luo, S.; Bengio, Y.; Peng, J.; Tang, J. Learning Neural Generative Dynamics for Molecular Conformation Generation. 2021; \urlhttp://arxiv.org/abs/2102.10240, arXiv:2102.10240 [physics]
- Xu, M.; Wang, W.; Luo, S.; Shi, C.; Bengio, Y.; Gomez-Bombarelli, R.; Tang, J. An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 11537–11547, ISSN: 2640-3498
- Ganea, O.; Pattanaik, L.; Coley, C.; Barzilay, R.; Jensen, K.; Green, W.; Jaakkola, T. GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles. Advances in Neural Information Processing Systems. 2021; pp 13757–13769
- Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. 2020,
- DALL-E. 2023; \urlhttps://en.wikipedia.org/w/index.php?title=DALL-E&oldid=1171382222, Page Version ID: 1171382222
- Midjourney. 2023; \urlhttps://en.wikipedia.org/w/index.php?title=Midjourney&oldid=1173734882, Page Version ID: 1173734882
- Schaul, K.; Shaban, H.; Tan, S.; Woo, M.; Tiku, N. AI can now create images out of thin air. See how it works. \urlhttps://www.washingtonpost.com/technology/interactive/2022/ai-image-generator/
- Karras, T.; Aittala, M.; Aila, T.; Laine, S. Elucidating the Design Space of Diffusion-Based Generative Models. Advances in Neural Information Processing Systems. 2022
- Luo, C. Understanding Diffusion Models: A Unified Perspective. 2022; \urlhttp://arxiv.org/abs/2208.11970, arXiv:2208.11970 [cs]
- Nichol, A. Q.; Dhariwal, P. Improved Denoising Diffusion Probabilistic Models. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 8162–8171, ISSN: 2640-3498
- Kingma, D.; Salimans, T.; Poole, B.; Ho, J. Variational Diffusion Models. Advances in Neural Information Processing Systems. 2021; pp 21696–21707
- Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Ermon, S.; Poole, B. Score-Based Generative Modeling through Stochastic Differential Equations. 2022
- Luo, S.; Hu, W. Diffusion Probabilistic Models for 3D Point Cloud Generation. 2021; pp 2837–2845
- Kong, Z.; Ping, W.; Huang, J.; Zhao, K.; Catanzaro, B. DiffWave: A Versatile Diffusion Model for Audio Synthesis. 2021
- Daniels, M.; Maunu, T.; Hand, P. Score-based Generative Neural Networks for Large-Scale Optimal Transport. 2022
- Chen, K.; Chen, X.; Yu, Z.; Zhu, M.; Yang, H. EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory Prediction. 2023
- Wang, W.; Yang, D.; Ye, Q.; Cao, B.; Zou, Y. NADiffuSE: Noise-aware Diffusion-based Model for Speech Enhancement. 2023
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis With Latent Diffusion Models. 2022; pp 10684–10695
- Brody, S.; Alon, U.; Yahav, E. How Attentive are Graph Attention Networks? arXiv:2105.14491 [cs] 2022, arXiv: 2105.14491
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks?; 2019; arXiv:1810.00826 [cs, stat] type: article
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. 2017; \urlhttps://arxiv.org/abs/1711.05101v3
- MIT Schwarzman College of Computing, I. AI Cures: data-driven clinical solutions for Covid-19. 2020; \urlhttps://www.aicures.mit.edu/data
- Yang, K. Data and scripts for COVID-19. \urlhttps://github.com/yangkevin2/coronavirus_data, 2020
- Song, J.; Meng, C.; Ermon, S. Denoising Diffusion Implicit Models. 2022; \urlhttp://arxiv.org/abs/2010.02502, arXiv:2010.02502 [cs]
- Bansal, A.; Borgnia, E.; Chu, H.-M.; Li, J. S.; Kazemi, H.; Huang, F.; Goldblum, M.; Geiping, J.; Goldstein, T. Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise. 2022; \urlhttp://arxiv.org/abs/2208.09392, arXiv:2208.09392 [cs]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 2018,
- Lugmayr, A.; Danelljan, M.; Romero, A.; Yu, F.; Timofte, R.; Van Gool, L. RePaint: Inpainting Using Denoising Diffusion Probabilistic Models. 2022; pp 11461–11471
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A. C.; Lo, W.-Y.; Dollár, P.; Girshick, R. Segment Anything. 2023; \urlhttp://arxiv.org/abs/2304.02643, arXiv:2304.02643 [cs]
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.