Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Epidemic modelling requires knowledge of the social network (2403.07881v1)

Published 9 Jan 2024 in physics.soc-ph, cs.SI, nlin.AO, and q-bio.PE

Abstract: Compartmental models of epidemics are widely used to forecast the effects of communicable diseases such as COVID-19 and to guide policy. Although it has long been known that such processes take place on social networks, the assumption of random mixing is usually made, which ignores network structure. However, super-spreading events have been found to be power-law distributed, suggesting that the underlying networks may be scale free or at least highly heterogeneous. The random-mixing assumption would then produce an overestimation of the herd-immunity threshold for given $R_0$; and a (more significant) overestimation of $R_0$ itself. These two errors compound each other, and can lead to forecasts greatly overestimating the number of infections. Moreover, if networks are heterogeneous and change in time, multiple waves of infection can occur, which are not predicted by random mixing. A simple SIR model simulated on both Erd\H{o}s-R\'enyi and scale-free networks shows that details of the network structure can be more important than the intrinsic transmissibility of a disease. It is therefore crucial to incorporate network information into standard models of epidemics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. Abou-Ismail, Compartmental models of the COVID-19 pandemic for physicians and physician-scientists, SN comprehensive clinical medicine 2, 852 (2020).
  2. R. Vardavas, P. N. de Lima, and L. Baker, Modeling COVID-19 nonpharmaceutical interventions: Exploring periodic NPI strategies, medRxiv  (2021).
  3. J. P. Ioannidis, S. Cripps, and M. A. Tanner, Forecasting for COVID-19 has failed, International Journal of Forecasting  (2020).
  4. See “SPI-M-O: Consensus Statement on COVID-19”, from 15 December 2021, for the advice given to the UK government before the expected Omicron wave: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1042204/S1439_SPI-M-O_Consensus_Statement.pdf.
  5. M. J. Keeling and K. T. Eames, Networks and epidemic models, Journal of the Royal Society Interface 2, 295 (2005).
  6. M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
  7. C. Moore and M. E. Newman, Epidemics and percolation in small-world networks, Physical Review E 61, 5678 (2000).
  8. R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Physical Review Letters 86, 3200 (2001).
  9. M. E. Newman, Spread of epidemic disease on networks, Physical Review E 66, 016128 (2002).
  10. S. Morita, Six susceptible-infected-susceptible models on scale-free networks, Scientific Reports 6, 1 (2016).
  11. S. Moore and T. Rogers, Predicting the speed of epidemics spreading in networks, Physical Review Letters 124, 068301 (2020).
  12. M. E. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks, Proceedings of the National Academy of Sciences 99, 2566 (2002).
  13. M. O. Jackson and B. W. Rogers, Meeting strangers and friends of friends: How random are social networks?, American Economic Review 97, 890 (2007).
  14. D. Lewis, Superspreading drives the COVID pandemic-and could help to tame it., Nature , 544 (2021).
  15. A. Endo et al., Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside china, Wellcome open research 5 (2020).
  16. M. Fukui and C. Furukawa, Power laws in superspreading events: Evidence from coronavirus outbreaks and implications for sir models, MedRxiv  (2020).
  17. P. Erdős and A. Rényi, On random graphs. I, Publicationes Mathematicae 6, 290 (1959).
  18. J. Klaise and S. Johnson, From neurons to epidemics: How trophic coherence affects spreading processes, Chaos 26 (2016).
  19. P. G. Fennell, S. Melnik, and J. P. Gleeson, Limitations of discrete-time approaches to continuous-time contagion dynamics, Physical Review E 94, 052125 (2016).
  20. W. Cota and S. C. Ferreira, Optimized Gillespie algorithms for the simulation of markovian epidemic processes on large and heterogeneous networks, Computer Physics Communications 219, 303 (2017).
  21. M. O. Jackson, The friendship paradox and systematic biases in perceptions and social norms, Journal of Political Economy 127, 777 (2019).
  22. M. Karsai, N. Perra, and A. Vespignani, Time varying networks and the weakness of strong ties, Scientific Reports 4, 1 (2014).
  23. V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters 87, 198701 (2001).
  24. S. Johnson, Digraphs are different: Why directionality matters in complex systems, Journal of Physics: Complexity 1, 015003 (2020).
  25. M. Barthélemy, Spatial networks, Physics Reports 499, 1 (2011).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Samuel Johnson (28 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com