Quasiclassical theory of superconducting spin-splitter effects and spin-filtering via altermagnets (2403.04851v3)
Abstract: Conducting altermagnets have recently emerged as intriguing materials supporting strongly spin-polarized currents without magnetic stray fields. We demonstrate that altermagnets enable three key functionalities, merging superconductivity and spintronics. The first prediction is a controllable supercurrent-induced edge magnetization, which acts like a dissipationless spin-splitter effect. The second and third predictions are a Cooper pair spin-splitter and a filtering effect, respectively. These effects allow for spatial separation of triplet pairs with opposite spin-polarizations and spin-selective tunneling of Cooper pairs. We derive a quasiclassical theory with associated boundary conditions that describe these phenomena and explain how they can be experimentally verified. Our results open a new path for spatial control of spin signals via triplet Cooper pairs using hybrid superconductor-altermagnet devices.
- F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys. 77, 1321 (2005).
- A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
- J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
- M. Nadeem, M. S. Fuhrer, and X. Wang, Nat. Rev. Phys. 5, 558 (2023).
- I. Mazin and The PRX Editors, Phys. Rev. X 12, 040002 (2022).
- S. Hayami, Y. Yanagi, and H. Kusunose, J. Phys. Soc. Jpn. 88, 123702 (2019).
- L. Šmejkal, J. Sinova, and T. Jungwirth, Phys. Rev. X 12, 031042 (2022).
- J. A. Ouassou, A. Brataas, and J. Linder, Phys. Rev. Lett. 131, 076003 (2023).
- S.-B. Zhang, L.-H. Hu, and T. Neupert, Nature Communications 15, 1801 (2024).
- C. W. J. Beenakker and T. Vakhtel, Phys. Rev. B 108, 075425 (2023).
- I. I. Mazin, Notes on altermagnetism and superconductivity (2022), arxiv:2203.05000 .
- D. Chakraborty and A. M. Black-Schaffer, Zero-field finite-momentum and field-induced superconductivity in altermagnets (2023), arxiv:2309.14427 .
- H. G. Giil and J. Linder, Superconductor-altermagnet memory functionality without stray fields (2023), arxiv:2308.10939 .
- S. Banerjee and M. S. Scheurer, Altermagnetic superconducting diode effect (2024), arxiv:2402.14071 .
- B. Brekke, A. Brataas, and A. Sudbø, Phys. Rev. B 108, 224421 (2023).
- K. Mæland, B. Brekke, and A. Sudbø, Many-body effects on superconductivity mediated by double-magnon processes in altermagnets (2024), arxiv:2402.14061 .
- C. Sun, A. Brataas, and J. Linder, Phys. Rev. B 108, 054511 (2023).
- M. Papaj, Phys. Rev. B 108, L060508 (2023).
- K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
- A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge ; New York, 2011).
- G. Eilenberger, Z. Phys. 214, 195 (1968).
- F. Konschelle, I. V. Tokatly, and F. S. Bergeret, Phys. Rev. B 92, 125443 (2015).
- M. Y. Kuprianov and V. F. Lukichev, Zh. Eksp. Teor. Fiz 94, 149 (1988).
- M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
- G. A. Bobkov, I. V. Bobkova, and A. M. Bobkov, Phys. Rev. B 108, 054510 (2023).
- G. Yang, C. Ciccarelli, and J. W. A. Robinson, Appl. Phys. Lett. 9, 050703 (2021).
- A. A. Zyuzin, Magnetoelectric effect in superconductors with d-wave magnetization (2024), arxiv:2402.15459 .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.