Stability and causality of rest frame modes in second-order spin hydrodynamics (2403.04711v2)
Abstract: We analyze the low- and high-momentum rest frame modes in the second-order spin hydrodynamics and check the asymptotic causality of the theory. A truncation scheme of the Israel-Stewart formalism derived in our earlier work is proposed that extends the minimal causal formulation. It consists of altogether 40 interconnected relaxation-type dynamical equations -- 16 (24) of them correspond to the independent components of the energy-momentum (spin) tensor. Similarly to previous studies, we find that the stability of the perturbations and asymptotic causality require using the spin equation of state that satisfies the generalized Frenkel condition demanding that the electric'' and
magnetic'' components of the spin density tensor have opposite signs. For low-momentum modes this behavior is similar to that found earlier for the first-order (Navier-Stokes) spin hydrodynamics.
- K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, “Fate of spin polarization in a relativistic fluid: An entropy-current analysis,” Phys. Lett. B 795 (2019) 100–106, arXiv:1901.06615 [hep-th].
- A. Daher, A. Das, and R. Ryblewski, “Stability studies of first-order spin-hydrodynamic frameworks,” Phys. Rev. D 107 no. 5, (2023) 054043, arXiv:2209.10460 [nucl-th].
- G. Sarwar, M. Hasanujjaman, J. R. Bhatt, H. Mishra, and J.-e. Alam, “Causality and stability of relativistic spin hydrodynamics,” Phys. Rev. D 107 no. 5, (2023) 054031, arXiv:2209.08652 [nucl-th].
- X.-Q. Xie, D.-L. Wang, C. Yang, and S. Pu, “Causality and stability analysis for the minimal causal spin hydrodynamics,” Phys. Rev. D 108 no. 9, (2023) 094031, arXiv:2306.13880 [hep-ph].
- N. Weickgenannt, “Linearly stable and causal relativistic first-order spin hydrodynamics,” Phys. Rev. D 108 no. 7, (2023) 076011, arXiv:2307.13561 [nucl-th].
- A. Daher, W. Florkowski, and R. Ryblewski, “Stability constraint for spin equation of state,” arXiv:2401.07608 [hep-ph].
- STAR Collaboration, L. Adamczyk et al., “Global ΛΛ\Lambdaroman_Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid,” Nature 548 (2017) 62–65, arXiv:1701.06657 [nucl-ex].
- STAR Collaboration, T. Niida, “Global and local polarization of ΛΛ\Lambdaroman_Λ hyperons in Au+Au collisions at 200 GeV from STAR,” Nucl. Phys. A 982 (2019) 511–514, arXiv:1808.10482 [nucl-ex].
- W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, “Relativistic fluid dynamics with spin,” Phys. Rev. C 97 no. 4, (2018) 041901, arXiv:1705.00587 [nucl-th].
- W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E. Speranza, “Spin-dependent distribution functions for relativistic hydrodynamics of spin-1/2 particles,” Phys. Rev. D97 no. 11, (2018) 116017, arXiv:1712.07676 [nucl-th].
- W. Florkowski, A. Kumar, and R. Ryblewski, “Thermodynamic versus kinetic approach to polarization-vorticity coupling,” Phys. Rev. C 98 no. 4, (2018) 044906, arXiv:1806.02616 [hep-ph].
- W. Florkowski, A. Kumar, and R. Ryblewski, “Relativistic hydrodynamics for spin-polarized fluids,” Prog. Part. Nucl. Phys. 108 (2019) 103709, arXiv:1811.04409 [nucl-th].
- S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, “Relativistic dissipative spin dynamics in the relaxation time approximation,” Phys. Lett. B 814 (2021) 136096, arXiv:2002.03937 [hep-ph].
- S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, “Dissipative Spin Dynamics in Relativistic Matter,” Phys. Rev. D 103 no. 1, (2021) 014030, arXiv:2008.10976 [nucl-th].
- K. Fukushima and S. Pu, “Spin hydrodynamics and symmetric energy-momentum tensors – A current induced by the spin vorticity –,” Phys. Lett. B 817 (2021) 136346, arXiv:2010.01608 [hep-th].
- A. Daher, A. Das, W. Florkowski, and R. Ryblewski, “Equivalence of canonical and phenomenological formulations of spin hydrodynamics,” arXiv:2202.12609 [nucl-th].
- R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, “Boost invariant spin hydrodynamics within the first order in derivative expansion,” arXiv:2211.02934 [nucl-th].
- R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, “Relativistic second-order spin hydrodynamics: An entropy-current analysis,” Phys. Rev. D 108 no. 1, (2023) 014024, arXiv:2304.01009 [nucl-th].
- N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, “Relativistic second-order dissipative spin hydrodynamics from the method of moments,” Phys. Rev. D 106 no. 9, (2022) 096014, arXiv:2203.04766 [nucl-th].
- E. Speranza and N. Weickgenannt, “Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics,” Eur. Phys. J. A 57 no. 5, (2021) 155, arXiv:2007.00138 [nucl-th].
- D. Wagner, N. Weickgenannt, and D. H. Rischke, “Lorentz-covariant nonlocal collision term for spin-1/2 particles,” Phys. Rev. D 106 no. 11, (2022) 116021, arXiv:2210.06187 [nucl-th].
- X.-L. Sheng, N. Weickgenannt, E. Speranza, D. H. Rischke, and Q. Wang, “From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions,” Phys. Rev. D 104 no. 1, (2021) 016029, arXiv:2103.10636 [nucl-th].
- N. Weickgenannt and J.-P. Blaizot, “Chiral hydrodynamics of expanding systems,” arXiv:2311.15817 [hep-ph].
- N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang, and D. H. Rischke, “Generating Spin Polarization from Vorticity through Nonlocal Collisions,” Phys. Rev. Lett. 127 no. 5, (2021) 052301, arXiv:2005.01506 [hep-ph].
- N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke, “Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism,” Phys. Rev. D100 no. 5, (2019) 056018, arXiv:1902.06513 [hep-ph].
- D. Wagner, N. Weickgenannt, and E. Speranza, “Quantum kinetic theory with interactions for massive vector bosons,” Phys. Rev. D 108 no. 11, (2023) 116017, arXiv:2306.05936 [nucl-th].
- N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, “Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term,” Phys. Rev. D 106 no. 9, (2022) L091901, arXiv:2208.01955 [nucl-th].
- D. Wagner, N. Weickgenannt, and E. Speranza, “Generating Tensor Polarization from Shear Stress,” arXiv:2207.01111 [nucl-th].
- F. Becattini, “Hydrodynamics of fluids with spin,” Phys. Part. Nucl. Lett. 8 (2011) 801–804.
- F. Becattini and L. Tinti, “Nonequilibrium Thermodynamical Inequivalence of Quantum Stress-energy and Spin Tensors,” Phys. Rev. D 87 no. 2, (2013) 025029, arXiv:1209.6212 [hep-th].
- F. Becattini and F. Piccinini, “The Ideal relativistic spinning gas: Polarization and spectra,” Annals Phys. 323 (2008) 2452–2473, arXiv:0710.5694 [nucl-th].
- F. Becattini and L. Tinti, “The Ideal relativistic rotating gas as a perfect fluid with spin,” Annals Phys. 325 (2010) 1566–1594, arXiv:0911.0864 [gr-qc].
- F. Becattini, W. Florkowski, and E. Speranza, “Spin tensor and its role in non-equilibrium thermodynamics,” Phys. Lett. B789 (2019) 419–425, arXiv:1807.10994 [hep-th].
- F. Becattini, L. Bucciantini, E. Grossi, and L. Tinti, “Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid,” Eur. Phys. J. C 75 no. 5, (2015) 191, arXiv:1403.6265 [hep-th].
- F. Becattini, A. Daher, and X.-L. Sheng, “Entropy current and entropy production in relativistic spin hydrodynamics,” Phys. Lett. B 850 (2024) 138533, arXiv:2309.05789 [nucl-th].
- D. She, A. Huang, D. Hou, and J. Liao, “Relativistic viscous hydrodynamics with angular momentum,” Sci. Bull. 67 (2022) 2265–2268, arXiv:2105.04060 [nucl-th].
- A. D. Gallegos, U. Gürsoy, and A. Yarom, “Hydrodynamics of spin currents,” SciPost Phys. 11 (2021) 041, arXiv:2101.04759 [hep-th].
- M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov, and H.-U. Yee, “Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation,” JHEP 11 (2021) 150, arXiv:2107.14231 [hep-th].
- S. Li, M. A. Stephanov, and H.-U. Yee, “Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics,” Phys. Rev. Lett. 127 no. 8, (2021) 082302, arXiv:2011.12318 [hep-th].
- S. Shi, C. Gale, and S. Jeon, “From chiral kinetic theory to relativistic viscous spin hydrodynamics,” Phys. Rev. C 103 no. 4, (2021) 044906, arXiv:2008.08618 [nucl-th].
- H.-H. Peng, J.-J. Zhang, X.-L. Sheng, and Q. Wang, “Ideal Spin Hydrodynamics from the Wigner Function Approach,” Chin. Phys. Lett. 38 no. 11, (2021) 116701, arXiv:2107.00448 [hep-th].
- J. Hu, “Kubo formulae for first-order spin hydrodynamics,” Phys. Rev. D 103 no. 11, (2021) 116015, arXiv:2101.08440 [hep-ph].
- N. Abbasi and S. Tahery, “On the correlation functions in stable first-order relativistic hydrodynamics,” arXiv:2212.14619 [hep-th].
- F. S. Bemfica, M. Martinez, and M. Shokri, “Causality and stability in first-order conformal anisotropic hydrodynamics,” Phys. Rev. D 108 no. 5, (2023) 056004, arXiv:2304.14563 [hep-th].
- M. Shokri and D. H. Rischke, “Linear stability analysis in inhomogeneous equilibrium configurations,” Phys. Rev. D 108 no. 9, (2023) 096029, arXiv:2309.07003 [physics.flu-dyn].
- L. Gavassino and M. Shokri, “Stability of multicomponent Israel-Stewart-Maxwell theory for charge diffusion,” Phys. Rev. D 108 no. 9, (2023) 096010, arXiv:2307.11615 [nucl-th].
- G. S. Rocha, D. Wagner, G. S. Denicol, J. Noronha, and D. H. Rischke, “Theories of Relativistic Dissipative Fluid Dynamics,” arXiv:2311.15063 [nucl-th].
- H. Elfner and B. Müller, “The exploration of hot and dense nuclear matter: Introduction to relativistic heavy-ion physics,” arXiv:2210.12056 [nucl-th].
- M. Strickland, “Hydrodynamization and resummed viscous hydrodynamics,” 2, 2024. arXiv:2402.09571 [nucl-th].
- X. An and M. Spaliński, “QGP Physics from Attractor Perturbations,” arXiv:2312.17237 [nucl-th].
- V. E. Ambrus, S. Schlichting, and C. Werthmann, “Establishing the Range of Applicability of Hydrodynamics in High-Energy Collisions,” Phys. Rev. Lett. 130 no. 15, (2023) 152301, arXiv:2211.14356 [hep-ph].
- F. Becattini, M. Buzzegoli, T. Niida, S. Pu, A.-H. Tang, and Q. Wang, “Spin polarization in relativistic heavy-ion collisions,” arXiv:2402.04540 [nucl-th].
- Y. N. Obukhov and F. W. Hehl, “Nonmetricity and hypermomentum: on the possible violation of Lorentz invariance,” 11, 2023. arXiv:2311.03160 [gr-qc].
- V. E. Ambrus, R. Ryblewski, and R. Singh, “Spin waves in spin hydrodynamics,” Phys. Rev. D 106 no. 1, (2022) 014018, arXiv:2202.03952 [hep-ph].
- V. E. Ambrus, S. Busuioc, J. A. Fotakis, K. Gallmeister, and C. Greiner, “Bjorken flow attractors with transverse dynamics,” Phys. Rev. D 104 no. 9, (2021) 094022, arXiv:2102.11785 [nucl-th].
- Y. N. Obukhov and F. W. Hehl, “Hyperfluid model revisited,” Phys. Rev. D 108 no. 10, (2023) 104044, arXiv:2308.06598 [gr-qc].
- N. Weickgenannt and J.-P. Blaizot, “Polarization dynamics from moment equations,” arXiv:2312.05917 [hep-ph].
- J. Weyssenhoff and A. Raabe, “Relativistic dynamics of spin-fluids and spin-particles,” Acta Phys. Polon. 9 (1947) 7–18. https://delibra.bg.polsl.pl/dlibra/publication/49478/edition/45224.
- W. A. Hiscock and L. Lindblom, “Generic instabilities in first-order dissipative relativistic fluid theories,” Phys. Rev. D 31 (1985) 725–733.
- P. Kovtun, “First-order relativistic hydrodynamics is stable,” JHEP 10 (2019) 034, arXiv:1907.08191 [hep-th].
- F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Nonlinear Causality of General First-Order Relativistic Viscous Hydrodynamics,” Phys. Rev. D 100 no. 10, (2019) 104020, arXiv:1907.12695 [gr-qc].
- F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Causality and existence of solutions of relativistic viscous fluid dynamics with gravity,” Phys. Rev. D 98 no. 10, (2018) 104064, arXiv:1708.06255 [gr-qc].
- T. Koide, G. S. Denicol, P. Mota, and T. Kodama, “Relativistic dissipative hydrodynamics: A Minimal causal theory,” Phys. Rev. C 75 (2007) 034909, arXiv:hep-ph/0609117.
- G. S. Denicol, T. Kodama, T. Koide, and P. Mota, “Stability and Causality in relativistic dissipative hydrodynamics,” J. Phys. G 35 (2008) 115102, arXiv:0807.3120 [hep-ph].
- P. Romatschke, “New Developments in Relativistic Viscous Hydrodynamics,” Int. J. Mod. Phys. E 19 (2010) 1–53, arXiv:0902.3663 [hep-ph].
- S. Pu, T. Koide, and D. H. Rischke, “Does stability of relativistic dissipative fluid dynamics imply causality?,” Phys. Rev. D 81 (2010) 114039, arXiv:0907.3906 [hep-ph].
- L. Gavassino, M. Antonelli, and B. Haskell, “Thermodynamic Stability Implies Causality,” Phys. Rev. Lett. 128 no. 1, (2022) 010606, arXiv:2105.14621 [gr-qc].
- R. Biswas, A. Dash, N. Haque, S. Pu, and V. Roy, “Causality and stability in relativistic viscous non-resistive magneto-fluid dynamics,” JHEP 10 (2020) 171, arXiv:2007.05431 [nucl-th].
- Z. Fang, K. Hattori, and J. Hu, “Analytic solutions for the linearized first-order magnetohydrodynamics and implications for causality and stability,” arXiv:2402.18601 [physics.plasm-ph].
- E. Speranza, F. S. Bemfica, M. M. Disconzi, and J. Noronha, “Challenges in solving chiral hydrodynamics,” Phys. Rev. D 107 no. 5, (2023) 054029, arXiv:2104.02110 [hep-th].
- N. Abboud, E. Speranza, and J. Noronha, “Causal and stable first-order chiral hydrodynamics,” arXiv:2308.02928 [hep-th].
- B. Betz, D. Henkel, and D. H. Rischke, “From kinetic theory to dissipative fluid dynamics,” Prog. Part. Nucl. Phys. 62 (2009) 556–561, arXiv:0812.1440 [nucl-th].
- H. Song and U. W. Heinz, “Multiplicity scaling in ideal and viscous hydrodynamics,” Phys. Rev. C 78 (2008) 024902, arXiv:0805.1756 [nucl-th].
- Y. Hidaka, M. Hongo, M. Stephanov, and H.-U. Yee, “Spin relaxation rate for baryons in thermal pion gas,” arXiv:2312.08266 [hep-ph].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.