Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

An efficient method for calculating resonant modes in biperiodic photonic structures (2403.04459v1)

Published 7 Mar 2024 in physics.comp-ph, cs.NA, math.NA, and physics.optics

Abstract: Many photonic devices, such as photonic crystal slabs, cross gratings, and periodic metasurfaces, are biperiodic structures with two independent periodic directions, and are sandwiched between two homogeneous media. Many applications of these devices are closely related to resonance phenomena. Therefore, efficient computation of resonant modes is crucial in device design and structure analysis. Since resonant modes satisfy outgoing radiation conditions, perfectly matched layers (PMLs) are usually used to truncate the unbounded spatial variable perpendicular to the periodic directions. In this paper, we develop an efficient method without using PMLs to calculate resonant modes in biperiodic structures. We reduce the original eigenvalue problem to a small matrix nonlinear eigenvalue problem which is solved by the contour integral method. Numerical examples show that our method is efficient with respect to memory usage and CPU time, free of spurious solutions, and determines degenerate resonant modes without any difficulty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. C. Nedelec and F. Starling, Integral equation methods in a quasi-periodic diffraction problem for the time-harmonic Maxwell’s equations, SIAM J. Math. Anal. 22, 1679 (1991).
  2. D. C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, RAIRO Modél. Math. Anal. Numér. 28, 419 (1994).
  3. S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B 65, 235112 (2002).
  4. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2004).
  5. E. N. Bulgakov and D. N. Maksimov, Bound states in the continuum and Fano resonances in the Dirac cone spectrum, J. Opt. Soc. Am. B 36, 2221 (2019).
  6. A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Math. Methods Appl. Sci. 17, 305 (1994).
  7. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).
  8. R. D. Richtmyer, Dielectric resonators, J. Appl. Phys. 10, 391 (1939).
  9. N. Shenk and D. Thoe, Eigenfunction expansions and scattering theory for perturbations of −ΔΔ-\Delta- roman_Δ, J. Math. Anal. Appl. 36, 313 (1971).
  10. N. Shenk and D. Thoe, Resonant states and poles of the scattering matrix for perturbations of −ΔΔ-\Delta- roman_Δ, J. Math. Anal. Appl. 37, 467 (1972).
  11. M. Lenoir, M. Vullierme-Ledard, and C. Hazard, Variational formulations for the determination of resonant states in scattering problems, SIAM J. Math. Anal. 23, 579 (1992).
  12. S. Venakides and S. P. Shipman, Resonance and bound states in photonic crystal slabs, SIAM J. Appl. Math. 64, 322 (2003).
  13. S. P. Shipman and S. Venakides, Resonant transmission near nonrobust periodic slab modes, Phys. Rev. E 71, 026611 (2005).
  14. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, 1984).
  15. S. Kim, H.-M. Kim, and Y.-H. Lee, Single nanobeam optical sensor with a high Q𝑄Qitalic_Q-factor and high sensitivity, Opt. Lett. 40, 5351 (2015).
  16. T. Itoh and R. S. Rudokas, New method for computing the resonant frequencies of dielectric resonators, IEEE Trans. Microw. Theory Tech. 25, 52 (1977).
  17. M. Wei, G. Majda, and W. Strauss, Numerical computation of the scattering frequencies for acoustic wave equations, J. Comput. Phys. 75, 345 (1988).
  18. J. Gopalakrishnan, S. Moskow, and F. Santosa, Asymptotic and numerical techniques for resonances of thin photonic structures, SIAM J. Appl. Math. 69, 37 (2008).
  19. J. Lin and H. Zhang, An integral equation method for numerical computation of scattering resonances in a narrow metallic slit, J. Comput. Phys. 385, 75 (2019).
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  21. S. Kim and J. Pasciak, The computation of resonances in open systems using a perfectly matched layer, Math. Comput. 78, 1375 (2009).
  22. G. Parisi, P. Zilio, and F. Romanato, Complex Bloch-modes calculation of plasmonic crystal slabs by means of finite elements method, Opt. Express 20, 16690 (2012).
  23. W. Shin and S. Fan, Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers, J. Comput. Phys. 231, 3406 (2012).
  24. S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Opt. Express 8, 173 (2001).
  25. S. Shi, C. Chen, and D. W. Prather, Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers, J. Opt. Soc. Am. A 21, 1769 (2004).
  26. F. Binkowski, L. Zschiedrich, and S. Burger, A Riesz-projection-based method for nonlinear eigenvalue problems, J. Comput. Phys. 419, 109678 (2020).
  27. L. Nannen and M. Wess, Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions, BIT Numer. Math. 58, 373 (2018).
  28. W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math. 9, 17 (1951).
  29. C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal. 10, 241 (1973).
  30. G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed. (JHU press, Baltimore, 2013).
  31. C. Engström and J. C. Araújo C., On spurious solutions encountered in helmholtz scattering resonance computations in Rdsuperscript𝑅𝑑R^{d}italic_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT with applications to nano-photonics and acoustics, J. Comput. Phys. 429, 110024 (2021).
  32. J. Tausch and J. Butler, Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps, J. Comput. Phys. 159, 90 (2000).
  33. S. Fliss, A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic crystal waveguides, SIAM J. Sci. Comput. 35, B438 (2013).
  34. J. C. Araujo-Cabarcas, C. Engström, and E. Jarlebring, Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map, J. Comput. Appl. Math. 330, 177 (2018).
  35. W.-J. Beyn, An integral method for solving nonlinear eigenvalue problems, Linear Algebra Its Appl. 436, 3839 (2012).
  36. S. Güttel and F. Tisseur, The nonlinear eigenvalue problem, Acta Numer. 26, 1 (2017).
  37. V. N. Kublanovskaya, On an application of Newton’s method to the determination of eigenvalues of λ𝜆\lambdaitalic_λ-matrices, Soviet Math. Dokl. 10, 1240 (1969).
  38. V. N. Kublanovskaya, On an approach to the solution of the generalized latent value problem for λ𝜆\lambdaitalic_λ-matrices, SIAM J. Numer. Anal. 7, 532 (1970).
  39. D. Kressner, A block Newton method for nonlinear eigenvalue problems, Numer. Math. 114, 355 (2009).
  40. A. W. Glisson, D. Kajfez, and J. James, Evaluation of modes in dielectric resonators using a surface integral equation formulation, IEEE Trans. Microw. Theory Tech. 31, 1023 (1983).
  41. J. Tausch, Computing Floquet-Bloch modes in biperiodic slabs with boundary elements, J. Comput. Appl. Math. 254, 192 (2013).
  42. J. Lin, W. Lu, and H. Zhang, Mathematical theory for electromagnetic scattering resonances and field enhancement in a subwavelength annular gap, Multiscale Model. Simul. 21, 1012 (2023).
  43. V. Liu and S. Fan, S44{}^{4}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT : A free electromagnetic solver for layered periodic structures, Comput. Phys. Commun. 183, 2233 (2012).
  44. H. Shi, X. Lu, and Y. Y. Lu, Vertical mode expansion method for numerical modeling of biperiodic structures, J. Opt. Soc. Am. A 33, 836 (2016).
  45. H.-C. Lin, Z. Wang, and C. W. Hsu, Fast multi-source nanophotonic simulations using augmented partial factorization, Nat. Comput. Sci. 2, 815 (2022).
  46. M. Zhang and X. Zhang, Ultrasensitive optical absorption in graphene based on bound states in the continuum, Sci. Rep. 5, 8266 (2015).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)