Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LitSim: A Conflict-aware Policy for Long-term Interactive Traffic Simulation (2403.04299v2)

Published 7 Mar 2024 in cs.RO and cs.AI

Abstract: Simulation is pivotal in evaluating the performance of autonomous driving systems due to the advantages of high efficiency and low cost compared to on-road testing. Bridging the gap between simulation and the real world requires realistic agent behaviors. However, the existing works have the following shortcomings in achieving this goal: (1) log replay offers realistic scenarios but often leads to collisions due to the absence of dynamic interactions, and (2) both heuristic-based and data-based solutions, which are parameterized and trained on real-world datasets, encourage interactions but often deviate from real-world data over long horizons. In this work, we propose LitSim, a long-term interactive simulation approach that maximizes realism by minimizing the interventions in the log. Specifically, our approach primarily uses log replay to ensure realism and intervenes only when necessary to prevent potential conflicts. We then encourage interactions among the agents and resolve the conflicts, thereby reducing the risk of unrealistic behaviors. We train and validate our model on the real-world dataset NGSIM, and the experimental results demonstrate that LitSim outperforms the currently popular approaches in terms of realism and reactivity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. B. Gassmann, F. Oboril, C. Buerkle, S. Liu, S. Yan, M. S. Elli, I. Alvarez, N. Aerrabotu, S. Jaber, P. Van Beek, et al., “Towards standardization of av safety: C++ library for responsibility sensitive safety,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 2265–2271.
  2. N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?” Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.
  3. F. Khan, M. Falco, H. Anwar, and D. Pfahl, “Safety testing of automated driving systems: A literature review,” IEEE Access, 2023.
  4. S. Tang, Z. Zhang, Y. Zhang, J. Zhou, Y. Guo, S. Liu, S. Guo, Y.-F. Li, L. Ma, Y. Xue, et al., “A survey on automated driving system testing: Landscapes and trends,” ACM Transactions on Software Engineering and Methodology, 2023.
  5. P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic traffic simulation using sumo,” in 2018 21st international conference on intelligent transportation systems (ITSC).   IEEE, 2018, pp. 2575–2582.
  6. M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator vissim,” Fundamentals of traffic simulation, pp. 63–93, 2010.
  7. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An open urban driving simulator,” in Conference on robot learning.   PMLR, 2017, pp. 1–16.
  8. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical review E, vol. 62, no. 2, p. 1805, 2000.
  9. A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007.
  10. L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. Del Pero, B. Osiński, H. Grimmett, and P. Ondruska, “Simnet: Learning reactive self-driving simulations from real-world observations,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 5119–5125.
  11. S. Suo, S. Regalado, S. Casas, and R. Urtasun, “Trafficsim: Learning to simulate realistic multi-agent behaviors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 400–10 409.
  12. Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning from visual demonstrations,” Advances in neural information processing systems, vol. 30, 2017.
  13. R. P. Bhattacharyya, D. J. Phillips, C. Liu, J. K. Gupta, K. Driggs-Campbell, and M. J. Kochenderfer, “Simulating emergent properties of human driving behavior using multi-agent reward augmented imitation learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 789–795.
  14. A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating driver behavior with generative adversarial networks,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 204–211.
  15. P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, et al., “Scalability in perception for autonomous driving: Waymo open dataset,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2446–2454.
  16. M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan, et al., “Argoverse: 3d tracking and forecasting with rich maps,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 8748–8757.
  17. S. Ammoun and F. Nashashibi, “Real time trajectory prediction for collision risk estimation between vehicles,” in 2009 IEEE 5Th international conference on intelligent computer communication and processing.   IEEE, 2009, pp. 417–422.
  18. T. Batz, K. Watson, and J. Beyerer, “Recognition of dangerous situations within a cooperative group of vehicles,” in 2009 IEEE Intelligent Vehicles Symposium.   IEEE, 2009, pp. 907–912.
  19. J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in 2015 IEEE intelligent vehicles symposium (IV).   IEEE, 2015, pp. 1094–1099.
  20. J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid, “Vectornet: Encoding hd maps and agent dynamics from vectorized representation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 525–11 533.
  21. T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde, “Home: Heatmap output for future motion estimation,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).   IEEE, 2021, pp. 500–507.
  22. N. Rhinehart, R. McAllister, K. Kitani, and S. Levine, “Precog: Prediction conditioned on goals in visual multi-agent settings,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2821–2830.
  23. H. Song, D. Luan, W. Ding, M. Y. Wang, and Q. Chen, “Learning to predict vehicle trajectories with model-based planning,” in Conference on Robot Learning.   PMLR, 2022, pp. 1035–1045.
  24. C. Tang and R. R. Salakhutdinov, “Multiple futures prediction,” Advances in neural information processing systems, vol. 32, 2019.
  25. D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Advances in neural information processing systems, vol. 1, 1988.
  26. S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured prediction to no-regret online learning,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 627–635.
  27. S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement learning for autonomous driving,” arXiv preprint arXiv:1610.03295, 2016.
  28. A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8248–8254.
  29. J. Ho and S. Ermon, “Generative adversarial imitation learning,” Advances in neural information processing systems, vol. 29, 2016.
  30. M. Vitelli, Y. Chang, Y. Ye, A. Ferreira, M. Wołczyk, B. Osiński, M. Niendorf, H. Grimmett, Q. Huang, A. Jain, et al., “Safetynet: Safe planning for real-world self-driving vehicles using machine-learned policies,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 897–904.
  31. Q. Sun, X. Huang, B. C. Williams, and H. Zhao, “Intersim: Interactive traffic simulation via explicit relation modeling,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 416–11 423.
  32. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  33. Q. Sun, X. Huang, J. Gu, B. C. Williams, and H. Zhao, “M2i: From factored marginal trajectory prediction to interactive prediction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6543–6552.
  34. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  35. J. Colyar and J. Halkias, “Next generation simulation (ngsim) vehicle trajectories and supporting data,” U.S. Department of Transportation Federal Highway Administration, Tech. Rep., 2016.
  36. T. M. M. Deo N, “Convolutional social pooling for vehicle trajectory prediction,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops.   IEEE, 2018, pp. 1468–1476.
  37. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.
  38. X. Li, X. Ying, and M. C. Chuah, “Grip++: Enhanced graph-based interaction-aware trajectory prediction for autonomous driving,” arXiv preprint arXiv:1907.07792, 2019.
  39. H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang, L. Fletcher, O. Beijbom, and S. Omari, “nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles,” arXiv preprint arXiv:2106.11810, 2021.
  40. J. J. Rolison, S. Regev, S. Moutari, and A. Feeney, “What are the factors that contribute to road accidents? an assessment of law enforcement views, ordinary drivers’ opinions, and road accident records,” Accident Analysis & Prevention, vol. 115, pp. 11–24, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com