Quantum Dynamical Emulation of Imaginary Time Evolution (2403.03350v2)
Abstract: We introduce a constructive method for mapping non-unitary dynamics to a weighted set of unitary operations. We utilize this construction to derive a new correspondence between real and imaginary time, which we term Imaginary Time Quantum Dynamical Emulation (ITQDE). This correspondence enables an imaginary time evolution to be constructed from the overlaps of states evolved in opposite directions. We develop ITQDE as a tool for estimating the ground and thermal state properties associated with a given Hamiltonian. We additionally provide a prescription for leveraging ITQDE to estimate the complete Hamiltonian spectrum. We go on to develop a quantum algorithm for computing Hamiltonian spectra based on ITQDE, which we validate through numerical simulations and quantum hardware implementations. We conclude with a discussion of how ITQDE can be utilized more broadly to derive novel thermodynamic results, including a generalisation of the Hubbard-Stratonovich transformation.
- G. C. Wick, Properties of bethe-salpeter wave functions, Phys. Rev. 96, 1124 (1954).
- M. B. Hastings and T. Koma, Spectral Gap and Exponential Decay of Correlations, Communications in Mathematical Physics 265, 781 (2006).
- T. S. Cubitt, D. Perez-Garcia, and M. M. Wolf, Undecidability of the spectral gap, Nature 528, 207 (2015).
- L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010), number: 7286 Publisher: Nature Publishing Group.
- M. J. Hartmann, M. E. Reuter, and M. B. Plenio, Excitation and entanglement transfer versus spectral gap, New Journal of Physics 8, 94 (2006).
- D. Jacquemin, B. Mennucci, and C. Adamo, Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments, Physical Chemistry Chemical Physics 13, 16987 (2011), publisher: Royal Society of Chemistry.
- P. Ramos and M. Pavanello, Low-lying excited states by constrained DFT, The Journal of Chemical Physics 148, 144103 (2018), publisher: American Institute of Physics.
- U. Kaldor, Degenerate many‐body perturbation theory: Excited states of H 22{}_{\textrm{2}}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, The Journal of Chemical Physics 63, 2199 (1975).
- M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Physical Review B 34, 5390 (1986), publisher: American Physical Society.
- M. S. Hybertsen and S. G. Louie, First-Principles Theory of Quasiparticles: Calculation of Band Gaps in Semiconductors and Insulators, Physical Review Letters 55, 1418 (1985), publisher: American Physical Society.
- R. W. Godby, M. Schlüter, and L. J. Sham, Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron, Physical Review Letters 56, 2415 (1986), publisher: American Physical Society.
- R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Physical Review B 37, 10159 (1988), publisher: American Physical Society.
- C.-C. Chou and D. J. Kouri, Multidimensional Supersymmetric Quantum Mechanics: A Scalar Hamiltonian Approach to Excited States by the Imaginary Time Propagation Method, The Journal of Physical Chemistry A 117, 3449 (2013), publisher: American Chemical Society.
- P. J. J. Luukko and E. Räsänen, Imaginary time propagation code for large-scale two-dimensional eigenvalue problems in magnetic fields, Computer Physics Communications 184, 769 (2013).
- L. Lehtovaara, J. Toivanen, and J. Eloranta, Solution of time-independent Schrödinger equation by the imaginary time propagation method, Journal of Computational Physics 221, 148 (2007).
- S. A. Chin, S. Janecek, and E. Krotscheck, Any order imaginary time propagation method for solving the Schrödinger equation, Chemical Physics Letters 470, 342 (2009).
- H. Tasaki, The Hubbard model - An introduction and selected rigorous results, J. Phys. Cond. Mat. 10, 4353 (1998).
- D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters 45, 566 (1980), publisher: American Physical Society.
- J. Chen and E. M. Stoudenmire, Hybrid purification and sampling approach for thermal quantum systems, Physical Review B 101, 195119 (2020), publisher: American Physical Society.
- A. Sinha, M. M. Rams, and J. Dziarmaga, Efficient representation of minimally entangled typical thermal states in two dimensions via projected entangled pair states, Physical Review B 109, 045136 (2024), publisher: American Physical Society.
- W. Kadow, F. Pollmann, and M. Knap, Isometric tensor network representations of two-dimensional thermal states, Physical Review B 107, 205106 (2023), publisher: American Physical Society.
- C. Gogolin, M. P. Müller, and J. Eisert, Absence of thermalization in nonintegrable systems, Phys. Rev. Lett. 106, 040401 (2011).
- M. Cramer, Thermalization under randomized local hamiltonians, New Journal of Physics 14, 053051 (2012).
- T. Shirai, T. Mori, and S. Miyashita, Floquet–Gibbs state in open quantum systems, Eur. Phys. J. Spec. Top. 227, 323 (2018).
- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983), https://www.science.org/doi/pdf/10.1126/science.220.4598.671 .
- G. H. Low and I. L. Chuang, Optimal hamiltonian simulation by quantum signal processing, Phys. Rev. Lett. 118, 010501 (2017).
- T. Kosugi, H. Nishi, and Y.-i. Matsushita, Exhaustive search for optimal molecular geometries using imaginary-time evolution on a quantum computer, npj Quantum Inf 9, 1 (2023), number: 1 Publisher: Nature Publishing Group.
- K. Hejazi, M. Motta, and G. K.-L. Chan, Adiabatic quantum imaginary time evolution (2023), arXiv:2308.03292 [quant-ph].
- G. McCaul, K. Jacobs, and D. I. Bondar, Fast computation of dissipative quantum systems with ensemble rank truncation, Phys. Rev. Research 3, 013017 (2021).
- C. Le Bris and P. Rouchon, Low-rank numerical approximations for high-dimensional Lindblad equations, Phys. Rev. A 87, 022125 (2013).
- J. Spencer, Asymptopia, Student mathematical library (American Mathematical Society, Providence, RI, 2014).
- J. M. Leamer, W. Dawson, and D. I. Bondar, Positivity preserving density matrix minimization at finite temperatures via square root (2023), arXiv:2103.07078 .
- J. E. Hirsch and J. R. Schrieffer, Dynamic correlation functions in quantum systems: A Monte Carlo algorithm, Physical Review B 28, 5353 (1983a), publisher: American Physical Society.
- J. E. Hirsch and J. R. Schrieffer, Dynamic correlation functions in quantum systems: A monte carlo algorithm, Phys. Rev. B 28, 5353 (1983b).
- D. M. Ceperley and B. Bernu, The calculation of excited state properties with quantum monte carlo, The Journal of Chemical Physics 89, 6316–6328 (1988).
- A. N. Chowdhury and R. D. Somma, Quantum algorithms for Gibbs sampling and hitting-time estimation (2016), arXiv:1603.02940 [quant-ph].
- G. McCaul and D. I. Bondar, How to win friends and influence functionals: deducing stochasticity from deterministic dynamics, The European Physical Journal Special Topics 230, 733 (2021a).
- U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Repo. Prog. Phys. 75, 126001 (2012).
- R. E. Spinney and I. J. Ford, Fluctuation relations: a pedagogical overview (2012) pp. 1–58, arXiv:1201.6381 .
- G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60, 2721 (1999).
- R. Kubo, The fluctuation-dissipation theorem, Reports on Progress in Physics 29, 255 (1966).
- S. H. Shenker and D. Stanford, Black holes and the butterfly effect, Journal of High Energy Physics 2014, 10.1007/jhep03(2014)067 (2014).
- A. Touil and S. Deffner, Information scrambling – a quantum thermodynamic perspective (2024), arXiv:2401.05305 .
- J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3, 77 (1959).
- G. M. G. McCaul, C. D. Lorenz, and L. Kantorovich, Partition-free approach to open quantum systems in harmonic environments: An exact stochastic liouville equation, PRB 95, 125124 (2017).
- G. M. G. McCaul, C. D. Lorenz, and L. Kantorovich, Driving spin-boson models from equilibrium using exact quantum dynamics, PRB 97, 224310 (2018).
- G. McCaul and D. I. Bondar, How to win friends and influence functionals: deducing stochasticity from deterministic dynamics, EPJST 230, 733 (2021b).
- J. Dziarmaga, Dynamics of a Quantum Phase Transition: Exact Solution of the Quantum Ising Model, Physical Review Letters 95, 245701 (2005).
- S. Sachdev, Quantum phase transitions (Cambridge University Press, Cambridge ; New York, 1999).
- T. K. Kopeć, K. D. Usadel, and G. Büttner, Instabilities in the quantum Sherrington-Kirkpatrick Ising spin glass in transverse and longitudinal fields, Physical Review B 39, 12418 (1989), publisher: American Physical Society.
- C. Laumann, A. Scardicchio, and S. L. Sondhi, Cavity method for quantum spin glasses on the Bethe lattice, Physical Review B 78, 134424 (2008), publisher: American Physical Society.
- S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani, How “Quantum” is the D-Wave Machine? (2014), arXiv:1401.7087 [quant-ph].
- P. Weinberg and M. Bukov, QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins, SciPost Physics 7, 020 (2019).
- M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).
- P. W. Anderson, The resonating valence bond state in La22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTCuO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and superconductivity, Science 235, 1196 (1987).
- S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
- Qiskit contributors, Qiskit: An open-source framework for quantum computing (2021).
- C. L. Cortes and S. K. Gray, Quantum krylov subspace algorithms for ground- and excited-state energy estimation, Phys. Rev. A 105, 022417 (2022).
- O. Kyriienko, Quantum inverse iteration algorithm for programmable quantum simulators, npj Quantum Information 6, 10.1038/s41534-019-0239-7 (2020).
- S. Scali, C. Umeano, and O. Kyriienko, Quantum topological data analysis via the estimation of the density of states (2023), arXiv:2312.07115 .
- S. Scali, C. Umeano, and O. Kyriienko, The topology of data hides in quantum thermal states (2024), arXiv:2402.15633 .
- N. Khaneja and S. J. Glaser, Cartan decomposition of su(2n) and control of spin systems, Chemical Physics 267, 11 (2001).
- D. Chruściński, Koopman’s approach to dissipation, Rep. Math. Phys. 57, 319 (2006).
- G. McCaul, A. Pechen, and D. I. Bondar, Entropy nonconservation and boundary conditions for hamiltonian dynamical systems, Phys. Rev. E 99, 062121 (2019).
- G. McCaul and D. I. Bondar, Free to harmonic unitary transformations in quantum and Koopman dynamics*, Journal of Physics A: Mathematical and Theoretical 55, 434003 (2022).
- G. McCaul, D. V. Zhdanov, and D. I. Bondar, Wave operator representation of quantum and classical dynamics, Phys. Rev. A 108, 052208 (2023).
- D. An, J.-P. Liu, and L. Lin, Linear combination of hamiltonian simulation for nonunitary dynamics with optimal state preparation cost, Phys. Rev. Lett. 131, 150603 (2023).
- S. Jin, N. Liu, and Y. Yu, Quantum simulation of partial differential equations: Applications and detailed analysis, Phys. Rev. A 108, 032603 (2023).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.