Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Quantum Search Algorithm for Random $k$-SAT with $Ω(n^{1+ε})$ Clauses (2403.03237v2)

Published 5 Mar 2024 in quant-ph and cs.CC

Abstract: The random k-SAT instances undergo a "phase transition" from being generally satisfiable to unsatisfiable as the clause number m passes a critical threshold, $r_k n$. This causes a drastic reduction in the number of satisfying assignments, shifting the problem from being generally solvable on classical computers to typically insolvable. Beyond this threshold, it is challenging to comprehend the computational complexity of random k-SAT. In quantum computing, Grover's search still yields exponential time requirements due to the neglect of structural information. Leveraging the structure inherent in search problems, we propose the k-local quantum search algorithm, which extends quantum search to structured scenarios. Grover's search, by contrast, addresses the unstructured case where k=n. Given that the search algorithm necessitates the presence of a target, we specifically focus on the problem of searching the interpretation of satisfiable instances of k-SAT, denoted as max-k-SSAT. If this problem is solvable in polynomial time, then k-SAT can also be solved within the same complexity. We demonstrate that, for small $k \ge 3$, any small $\epsilon>0$ and sufficiently large n: $\cdot$ k-local quantum search achieves general efficiency on random instances of max-k-SSAT with $m=\Omega(n{2+\delta+\epsilon})$ using $\mathcal{O}(n)$ iterations, and $\cdot$ k-local adiabatic quantum search enhances the bound to $m=\Omega(n{1+\delta+\epsilon})$ within an evolution time of $\mathcal{O}(n2)$. In both cases, the circuit complexity of each iteration is $\mathcal{O}(nk)$, and the efficiency is assured with overwhelming probability $1 - \mathcal{O}(\mathrm{erfc}(n{\delta/2}))$. By modifying this algorithm capable of solving all instances of max-k-SSAT, we further prove that max-k-SSAT is polynomial on average when $m=\Omega(n{2+\epsilon})$ based on the average-case complexity theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. S. Aaronson “Lower Bounds for Local Search by Quantum Arguments” In SIAM Journal on Computing 35.4, 2006, pp. 804–824 DOI: 10.1137/S0097539704447237
  2. “Random k𝑘kitalic_k-SAT: Two Moments Suffice to Cross a Sharp Threshold” In SIAM Journal on Computing 36.3, 2006, pp. 740–762 DOI: 10.1137/S0097539703434231
  3. Tameem Albash and Daniel A. Lidar “Adiabatic quantum computation” In Reviews of Modern Physics 90 American Physical Society, 2018, pp. 015002 DOI: 10.1103/RevModPhys.90.015002
  4. “Elementary gates for quantum computation” In Physical Review A 52 American Physical Society, 1995, pp. 3457–3467 DOI: 10.1103/PhysRevA.52.3457
  5. Paul Benioff “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines” In Journal of Statistical Physics 22.5, 1980, pp. 563–591 DOI: 10.1007/BF01011339
  6. “Beweis des Adiabatensatzes” In Zeitschrift für Physik 51.3, 1928, pp. 165–180 DOI: 10.1007/BF01343193
  7. Peter Cheeseman, Bob Kanefsky and William M. Taylor “Where the really hard problems are” In Proceedings of the 12th International Joint Conference on Artificial Intelligence - Volume 1, 1991, pp. 331–337
  8. Andrew M. Childs, Edward Farhi and John Preskill “Robustness of adiabatic quantum computation” In Physical Review A 65 American Physical Society, 2001, pp. 012322 DOI: 10.1103/PhysRevA.65.012322
  9. “Mick gets some (the odds are on his side) (satisfiability)” In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science IEEE, 1992, pp. Insert Page Numbers DOI: 10.1109/SFCS.1992.267789
  10. “The asymptotic k𝑘kitalic_k-SAT threshold” In Advances in Mathematics 288, 2016, pp. 985–1068 DOI: 10.1016/j.aim.2015.11.007
  11. Stephen A. Cook “The complexity of theorem–proving procedures” In Proceedings of the Third Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158 DOI: 10.1145/800157.805047
  12. Neil G. Dickson and M. H. S. Amin “Does Adiabatic Quantum Optimization Fail for NP-Complete Problems?” In Physical Review Letters 106 American Physical Society, 2011, pp. 050502 DOI: 10.1103/PhysRevLett.106.050502
  13. Jian Ding, Allan Sly and Nike Sun “Proof of the satisfiability conjecture for large k𝑘kitalic_k” In Annals of Mathematics 196.1, 2022, pp. 1–388 DOI: 10.4007/annals.2022.196.1.1
  14. Edward Farhi, Jeffrey Goldstone and Sam Gutmann “A Quantum Approximate Optimization Algorithm”, 2014 DOI: 10.48550/arXiv.1411.4028
  15. “A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem” In Science 292.5516, 2001, pp. 472–475 DOI: 10.1126/science.1057726
  16. “Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs” In Physical Review A 86 American Physical Society, 2012, pp. 052334 DOI: 10.1103/PhysRevA.86.052334
  17. “Quantum Adiabatic Algorithms, Small Gaps, and Different Paths” In Quantum Info. Comput. 11.3 Paramus, NJ: Rinton Press, Incorporated, 2011, pp. 181–214
  18. “Quantum Computation by Adiabatic Evolution”, 2000 DOI: 10.48550/arXiv.quant-ph/0001106
  19. Andreas Goerdt “A Threshold for Unsatisfiability” In Mathematical Foundations of Computer Science 1992 Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 264–274 DOI: 10.1007/3-540-55808-X˙25
  20. Lov K. Grover “Quantum Mechanics Helps in Searching for a Needle in a Haystack” In Physical Review Letters 79 American Physical Society, 1997, pp. 325–328 DOI: 10.1103/PhysRevLett.79.325
  21. Aram W. Harrow, Avinatan Hassidim and Seth Lloyd “Quantum Algorithm for Linear Systems of Equations” In Physical Review Letters 103 American Physical Society, 2009, pp. 150502 DOI: 10.1103/PhysRevLett.103.150502
  22. “Quantum annealing in the transverse Ising model” In Physical Review E 58 American Physical Society, 1998, pp. 5355–5363 DOI: 10.1103/PhysRevE.58.5355
  23. “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets” In Nature 549.7671, 2017, pp. 242–246 DOI: 10.1038/nature23879
  24. Richard M. Karp “Reducibility among Combinatorial Problems” In Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations Boston, MA: Springer US, 1972, pp. 85–103 DOI: 10.1007/978-1-4684-2001-2˙9
  25. Julia Kempe, Alexei Kitaev and Oded Regev “The Complexity of the Local Hamiltonian Problem” In SIAM Journal on Computing 35.5, 2006, pp. 1070–1097 DOI: 10.1137/S0097539704445226
  26. “Approximating the Unsatisfiability Threshold of Random Formulas” In Random Structures & Algorithms 12.3, 1998, pp. 253–269
  27. Leonid A. Levin “Average Case Complete Problems” In SIAM Journal on Computing 15.1, 1986, pp. 285–286 DOI: 10.1137/0215020
  28. N. Livne “All Natural NP-Complete Problems Have Average-Case Complete Versions” In Computational Complexity 19, 2010, pp. 477–499 DOI: 10.1007/s00037-010-0298-9
  29. David Mitchell, Bart Selman and Hector Levesque “Hard and easy distributions of SAT problems” In Proceedings of the Tenth National Conference on Artificial Intelligence, 1992, pp. 459–465
  30. Michael A. Nielsen and Isaac L. Chuang “Quantum Computation and Quantum Information: 10th Anniversary Edition” Cambridge: Cambridge University Press, 2010 DOI: 10.1017/CBO9780511976667
  31. Olga Ohrimenko, Peter J. Stuckey and Michael Codish “Propagation = Lazy Clause Generation” In Principles and Practice of Constraint Programming – CP 2007 Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 544–558 DOI: 10.1007/978-3-540-74970-7˙39
  32. “A variational eigenvalue solver on a photonic quantum processor” In Nature Communications 5.1, 2014, pp. 4213 DOI: 10.1038/ncomms5213
  33. Jérémie Roland and Nicolas J. Cerf “Quantum search by local adiabatic evolution” In Physical Revie A 65 American Physical Society, 2002, pp. 042308 DOI: 10.1103/PhysRevA.65.042308
  34. Peter W. Shor “Algorithms for Quantum Computation: Discrete Logarithms and Factoring” In Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134 DOI: 10.1109/SFCS.1994.365700
  35. M. Suzuki “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems” In Communications in Mathematical Physics 51.3, 1976, pp. 183–190
  36. Teague Tomesh, Zain H. Saleem and Martin Suchara “Quantum Local Search with the Quantum Alternating Operator Ansatz” In Quantum 6 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 781 DOI: 10.22331/q-2022-08-22-781
  37. “Sufficiency Criterion for the Validity of the Adiabatic Approximation” In Physical Review Letters 98 American Physical Society, 2007, pp. 150402 DOI: 10.1103/PhysRevLett.98.150402
  38. H. F. Trotter “On the product of semi-groups of operators” In Proceedings of the American Mathematical Society 10.4, 1959, pp. 545–551
  39. “Quantum adiabatic computation and adiabatic conditions” In Physical Review A 76 American Physical Society, 2007, pp. 024304 DOI: 10.1103/PhysRevA.76.024304
  40. “Efficient quantum circuits for diagonal unitaries without ancillas” In New Journal of Physics 16, 2014, pp. 033040 DOI: 10.1088/1367-2630/16/3/033040
Citations (1)

Summary

We haven't generated a summary for this paper yet.