Local Quantum Search Algorithm for Random $k$-SAT with $Ω(n^{1+ε})$ Clauses (2403.03237v2)
Abstract: The random k-SAT instances undergo a "phase transition" from being generally satisfiable to unsatisfiable as the clause number m passes a critical threshold, $r_k n$. This causes a drastic reduction in the number of satisfying assignments, shifting the problem from being generally solvable on classical computers to typically insolvable. Beyond this threshold, it is challenging to comprehend the computational complexity of random k-SAT. In quantum computing, Grover's search still yields exponential time requirements due to the neglect of structural information. Leveraging the structure inherent in search problems, we propose the k-local quantum search algorithm, which extends quantum search to structured scenarios. Grover's search, by contrast, addresses the unstructured case where k=n. Given that the search algorithm necessitates the presence of a target, we specifically focus on the problem of searching the interpretation of satisfiable instances of k-SAT, denoted as max-k-SSAT. If this problem is solvable in polynomial time, then k-SAT can also be solved within the same complexity. We demonstrate that, for small $k \ge 3$, any small $\epsilon>0$ and sufficiently large n: $\cdot$ k-local quantum search achieves general efficiency on random instances of max-k-SSAT with $m=\Omega(n{2+\delta+\epsilon})$ using $\mathcal{O}(n)$ iterations, and $\cdot$ k-local adiabatic quantum search enhances the bound to $m=\Omega(n{1+\delta+\epsilon})$ within an evolution time of $\mathcal{O}(n2)$. In both cases, the circuit complexity of each iteration is $\mathcal{O}(nk)$, and the efficiency is assured with overwhelming probability $1 - \mathcal{O}(\mathrm{erfc}(n{\delta/2}))$. By modifying this algorithm capable of solving all instances of max-k-SSAT, we further prove that max-k-SSAT is polynomial on average when $m=\Omega(n{2+\epsilon})$ based on the average-case complexity theory.
- S. Aaronson “Lower Bounds for Local Search by Quantum Arguments” In SIAM Journal on Computing 35.4, 2006, pp. 804–824 DOI: 10.1137/S0097539704447237
- “Random k𝑘kitalic_k-SAT: Two Moments Suffice to Cross a Sharp Threshold” In SIAM Journal on Computing 36.3, 2006, pp. 740–762 DOI: 10.1137/S0097539703434231
- Tameem Albash and Daniel A. Lidar “Adiabatic quantum computation” In Reviews of Modern Physics 90 American Physical Society, 2018, pp. 015002 DOI: 10.1103/RevModPhys.90.015002
- “Elementary gates for quantum computation” In Physical Review A 52 American Physical Society, 1995, pp. 3457–3467 DOI: 10.1103/PhysRevA.52.3457
- Paul Benioff “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines” In Journal of Statistical Physics 22.5, 1980, pp. 563–591 DOI: 10.1007/BF01011339
- “Beweis des Adiabatensatzes” In Zeitschrift für Physik 51.3, 1928, pp. 165–180 DOI: 10.1007/BF01343193
- Peter Cheeseman, Bob Kanefsky and William M. Taylor “Where the really hard problems are” In Proceedings of the 12th International Joint Conference on Artificial Intelligence - Volume 1, 1991, pp. 331–337
- Andrew M. Childs, Edward Farhi and John Preskill “Robustness of adiabatic quantum computation” In Physical Review A 65 American Physical Society, 2001, pp. 012322 DOI: 10.1103/PhysRevA.65.012322
- “Mick gets some (the odds are on his side) (satisfiability)” In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science IEEE, 1992, pp. Insert Page Numbers DOI: 10.1109/SFCS.1992.267789
- “The asymptotic k𝑘kitalic_k-SAT threshold” In Advances in Mathematics 288, 2016, pp. 985–1068 DOI: 10.1016/j.aim.2015.11.007
- Stephen A. Cook “The complexity of theorem–proving procedures” In Proceedings of the Third Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158 DOI: 10.1145/800157.805047
- Neil G. Dickson and M. H. S. Amin “Does Adiabatic Quantum Optimization Fail for NP-Complete Problems?” In Physical Review Letters 106 American Physical Society, 2011, pp. 050502 DOI: 10.1103/PhysRevLett.106.050502
- Jian Ding, Allan Sly and Nike Sun “Proof of the satisfiability conjecture for large k𝑘kitalic_k” In Annals of Mathematics 196.1, 2022, pp. 1–388 DOI: 10.4007/annals.2022.196.1.1
- Edward Farhi, Jeffrey Goldstone and Sam Gutmann “A Quantum Approximate Optimization Algorithm”, 2014 DOI: 10.48550/arXiv.1411.4028
- “A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem” In Science 292.5516, 2001, pp. 472–475 DOI: 10.1126/science.1057726
- “Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs” In Physical Review A 86 American Physical Society, 2012, pp. 052334 DOI: 10.1103/PhysRevA.86.052334
- “Quantum Adiabatic Algorithms, Small Gaps, and Different Paths” In Quantum Info. Comput. 11.3 Paramus, NJ: Rinton Press, Incorporated, 2011, pp. 181–214
- “Quantum Computation by Adiabatic Evolution”, 2000 DOI: 10.48550/arXiv.quant-ph/0001106
- Andreas Goerdt “A Threshold for Unsatisfiability” In Mathematical Foundations of Computer Science 1992 Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 264–274 DOI: 10.1007/3-540-55808-X˙25
- Lov K. Grover “Quantum Mechanics Helps in Searching for a Needle in a Haystack” In Physical Review Letters 79 American Physical Society, 1997, pp. 325–328 DOI: 10.1103/PhysRevLett.79.325
- Aram W. Harrow, Avinatan Hassidim and Seth Lloyd “Quantum Algorithm for Linear Systems of Equations” In Physical Review Letters 103 American Physical Society, 2009, pp. 150502 DOI: 10.1103/PhysRevLett.103.150502
- “Quantum annealing in the transverse Ising model” In Physical Review E 58 American Physical Society, 1998, pp. 5355–5363 DOI: 10.1103/PhysRevE.58.5355
- “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets” In Nature 549.7671, 2017, pp. 242–246 DOI: 10.1038/nature23879
- Richard M. Karp “Reducibility among Combinatorial Problems” In Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations Boston, MA: Springer US, 1972, pp. 85–103 DOI: 10.1007/978-1-4684-2001-2˙9
- Julia Kempe, Alexei Kitaev and Oded Regev “The Complexity of the Local Hamiltonian Problem” In SIAM Journal on Computing 35.5, 2006, pp. 1070–1097 DOI: 10.1137/S0097539704445226
- “Approximating the Unsatisfiability Threshold of Random Formulas” In Random Structures & Algorithms 12.3, 1998, pp. 253–269
- Leonid A. Levin “Average Case Complete Problems” In SIAM Journal on Computing 15.1, 1986, pp. 285–286 DOI: 10.1137/0215020
- N. Livne “All Natural NP-Complete Problems Have Average-Case Complete Versions” In Computational Complexity 19, 2010, pp. 477–499 DOI: 10.1007/s00037-010-0298-9
- David Mitchell, Bart Selman and Hector Levesque “Hard and easy distributions of SAT problems” In Proceedings of the Tenth National Conference on Artificial Intelligence, 1992, pp. 459–465
- Michael A. Nielsen and Isaac L. Chuang “Quantum Computation and Quantum Information: 10th Anniversary Edition” Cambridge: Cambridge University Press, 2010 DOI: 10.1017/CBO9780511976667
- Olga Ohrimenko, Peter J. Stuckey and Michael Codish “Propagation = Lazy Clause Generation” In Principles and Practice of Constraint Programming – CP 2007 Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 544–558 DOI: 10.1007/978-3-540-74970-7˙39
- “A variational eigenvalue solver on a photonic quantum processor” In Nature Communications 5.1, 2014, pp. 4213 DOI: 10.1038/ncomms5213
- Jérémie Roland and Nicolas J. Cerf “Quantum search by local adiabatic evolution” In Physical Revie A 65 American Physical Society, 2002, pp. 042308 DOI: 10.1103/PhysRevA.65.042308
- Peter W. Shor “Algorithms for Quantum Computation: Discrete Logarithms and Factoring” In Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134 DOI: 10.1109/SFCS.1994.365700
- M. Suzuki “Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems” In Communications in Mathematical Physics 51.3, 1976, pp. 183–190
- Teague Tomesh, Zain H. Saleem and Martin Suchara “Quantum Local Search with the Quantum Alternating Operator Ansatz” In Quantum 6 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2022, pp. 781 DOI: 10.22331/q-2022-08-22-781
- “Sufficiency Criterion for the Validity of the Adiabatic Approximation” In Physical Review Letters 98 American Physical Society, 2007, pp. 150402 DOI: 10.1103/PhysRevLett.98.150402
- H. F. Trotter “On the product of semi-groups of operators” In Proceedings of the American Mathematical Society 10.4, 1959, pp. 545–551
- “Quantum adiabatic computation and adiabatic conditions” In Physical Review A 76 American Physical Society, 2007, pp. 024304 DOI: 10.1103/PhysRevA.76.024304
- “Efficient quantum circuits for diagonal unitaries without ancillas” In New Journal of Physics 16, 2014, pp. 033040 DOI: 10.1088/1367-2630/16/3/033040