Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Displacements to Distributions: A Machine-Learning Enabled Framework for Quantifying Uncertainties in Parameters of Computational Models (2403.03233v1)

Published 4 Mar 2024 in stat.ML and cs.LG

Abstract: This work presents novel extensions for combining two frameworks for quantifying both aleatoric (i.e., irreducible) and epistemic (i.e., reducible) sources of uncertainties in the modeling of engineered systems. The data-consistent (DC) framework poses an inverse problem and solution for quantifying aleatoric uncertainties in terms of pullback and push-forward measures for a given Quantity of Interest (QoI) map. Unfortunately, a pre-specified QoI map is not always available a priori to the collection of data associated with system outputs. The data themselves are often polluted with measurement errors (i.e., epistemic uncertainties), which complicates the process of specifying a useful QoI. The Learning Uncertain Quantities (LUQ) framework defines a formal three-step machine-learning enabled process for transforming noisy datasets into samples of a learned QoI map to enable DC-based inversion. We develop a robust filtering step in LUQ that can learn the most useful quantitative information present in spatio-temporal datasets. The learned QoI map transforms simulated and observed datasets into distributions to perform DC-based inversion. We also develop a DC-based inversion scheme that iterates over time as new spatial datasets are obtained and utilizes quantitative diagnostics to identify both the quality and impact of inversion at each iteration. Reproducing Kernel Hilbert Space theory is leveraged to mathematically analyze the learned QoI map and develop a quantitative sufficiency test for evaluating the filtered data. An illustrative example is utilized throughout while the final two examples involve the manufacturing of shells of revolution to demonstrate various aspects of the presented frameworks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Y. Bai, W.-L. Jin, Chapter 33 - random variables and uncertainty analysis, in: Y. Bai, W.-L. Jin (Eds.), Marine Structural Design (Second Edition), second edition ed., Butterworth-Heinemann, Oxford, 2016, pp. 615–625. URL: https://www.sciencedirect.com/science/article/pii/B9780080999975000332. doi:https://doi.org/10.1016/B978-0-08-099997-5.00033-2.
  2. C. J. Roy, W. L. Oberkampf, A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Computer Methods in Applied Mechanics and Engineering 200 (2011) 2131 – 2144. URL: http://www.sciencedirect.com/science/article/pii/S0045782511001290. doi:https://doi.org/10.1016/j.cma.2011.03.016.
  3. A. Tran, T. Wildey, Solving stochastic inverse problems for property–structure linkages using data-consistent inversion and machine learning, JOM 73 (2021) 72–89.
  4. T. Butler, H. Hakula, What do we hear from a drum? A data-consistent approach to quantifying irreducible uncertainty on model inputs by extracting information from correlated model output data, Computer Methods in Applied Mechanics and Engineering 370 (2020) 113228. doi:10.1016/j.cma.2020.113228.
  5. Improving the long-term stability of pbdttpd polymer solar cells through material purification aimed at removing organic impurities, Energy Environ. Sci. 6 (2013) 2529–2537. URL: http://dx.doi.org/10.1039/C3EE41328D. doi:10.1039/C3EE41328D.
  6. M. Liu, G.-L. Song, Impurity control and corrosion resistance of magnesium–aluminum alloy, Corrosion Science 77 (2013) 143 – 150. URL: http://www.sciencedirect.com/science/article/pii/S0010938X13003478. doi:https://doi.org/10.1016/j.corsci.2013.07.037.
  7. S.-Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning, Metallurgical Transactions A 18 (1987) 1721–1733. URL: https://doi.org/10.1007/BF02646204. doi:10.1007/BF02646204.
  8. Error compensation in machine tools — a review: Part i: geometric, cutting-force induced and fixture-dependent errors, International Journal of Machine Tools and Manufacture 40 (2000a) 1235 – 1256. URL: http://www.sciencedirect.com/science/article/pii/S0890695500000092. doi:https://doi.org/10.1016/S0890-6955(00)00009-2.
  9. Error compensation in machine tools — a review: Part ii: thermal errors, International Journal of Machine Tools and Manufacture 40 (2000b) 1257 – 1284. URL: http://www.sciencedirect.com/science/article/pii/S0890695500000109. doi:https://doi.org/10.1016/S0890-6955(00)00010-9.
  10. State Space Modeling of Variation Propagation in Multistation Machining Processes Considering Machining-Induced Variations, Journal of Manufacturing Science and Engineering 134 (2012). URL: https://doi.org/10.1115/1.4005790. doi:10.1115/1.4005790. arXiv:https://asmedigitalcollection.asme.org/manufacturingscience/article-pdf/134/2/021002/5637745/021002_1.pdf, 021002.
  11. Uncertainty in the determination of elastic modulus by tensile testing, Engineering Science and Technology, an International Journal 25 (2022) 100998. URL: https://www.sciencedirect.com/science/article/pii/S2215098621001105. doi:https://doi.org/10.1016/j.jestch.2021.05.002.
  12. Design and use of trommel screens for processing municipal solid waste, 1982. URL: https://api.semanticscholar.org/CorpusID:4181072.
  13. A probabilistic graphical model foundation for enabling predictive digital twins at scale, Nature Computational Science 1 (2021) 337–347. URL: https://doi.org/10.1038/s43588-021-00069-0. doi:10.1038/s43588-021-00069-0.
  14. Inverse problems in the Bayesian framework, Inverse Problems 30 (2014) 110301. URL: http://stacks.iop.org/0266-5611/30/i=11/a=110301.
  15. Approximation of bayesian inverse problems, SIAM Journal of Numerical Analysis 48 (2010) 322–345.
  16. M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (2001) 425–464. URL: http://dx.doi.org/10.1111/1467-9868.00294. doi:10.1111/1467-9868.00294.
  17. An overview of robust bayesian analysis, Test 3 (1994) 5–124. URL: http://dx.doi.org/10.1007/BF02562676. doi:10.1007/BF02562676.
  18. B. Fitzpatrick, Bayesian analysis in inverse problems, Inverse Problems 7 (1991) 675. URL: {http://stacks.iop.org/0266-5611/7/i=5/a=003}.
  19. M. Burger, F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators, Inverse Problems 30 (2014) 114004. URL: https://doi.org/10.1088/0266-5611/30/11/114004. doi:10.1088/0266-5611/30/11/114004.
  20. A computational framework for infinite-dimensional bayesian inverse problems, part ii: Stochastic newton mcmc with application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing 36 (2014) A1525–A1555. URL: https://doi.org/10.1137/130934805. doi:10.1137/130934805. arXiv:https://doi.org/10.1137/130934805.
  21. A fast and scalable method for a-optimal design of experiments for infinite-dimensional bayesian nonlinear inverse problems, SIAM Journal on Scientific Computing 38 (2016) A243–A272. URL: https://doi.org/10.1137/140992564. doi:10.1137/140992564. arXiv:https://doi.org/10.1137/140992564.
  22. Hierarchical bayesian space-time models, Environmental and Ecological Statistics 5 (1998) 117–154. URL: https://doi.org/10.1023/A:1009662704779. doi:10.1023/A:1009662704779.
  23. A. E. Gelfand, A. Kottas, A computational approach for full nonparametric bayesian inference under dirichlet process mixture models, 2002.
  24. A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest, SIAM/ASA Journal on Uncertainty Quantification 2 (2014) 174–202. URL: http://dx.doi.org/10.1137/130930406. doi:10.1137/130930406. arXiv:http://dx.doi.org/10.1137/130930406, doi:10.1137/130930406.
  25. Combining Push-Forward Measures and Bayes’ Rule to Construct Consistent Solutions to Stochastic Inverse Problems, SIAM Journal on Scientific Computing 40 (2018) A984–A1011. URL: https://doi.org/10.1137/16M1087229. doi:10.1137/16M1087229. arXiv:https://doi.org/10.1137/16M1087229.
  26. Inverse problems for physics-based process models, Annual Review of Statistics and Its Application 11 (2024) null. URL: https://doi.org/10.1146/annurev-statistics-031017-100108. doi:10.1146/annurev-statistics-031017-100108. arXiv:https://doi.org/10.1146/annurev-statistics-031017-100108.
  27. J. Change, D. Pollard, Conditioning as disintegration, Statistica Neerlandica 51 (1997) 287–317. doi:10.1111/1467-9574.00056.
  28. Inferring parameters of pyramidal neuron excitability in mouse models of alzheimer’s disease using biophysical modeling and deep learning, bioRxiv (2023). URL: https://www.biorxiv.org/content/early/2023/04/19/2023.04.18.537149. doi:10.1101/2023.04.18.537149. arXiv:https://www.biorxiv.org/content/early/2023/04/19/2023.04.18.537149.full.pdf.
  29. Y. Zhang, L. Mikelsons, Solving stochastic inverse problems with stochastic bayesflow, in: 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2023, pp. 966–972. doi:10.1109/AIM46323.2023.10196190.
  30. Sequential data-consistent model inversion, in: NeurIPS 2023 Workshop on Deep Learning and Inverse Problems, 2023b. URL: https://openreview.net/forum?id=5NoVk8nBWc.
  31. lpsuperscript𝑙𝑝l^{p}italic_l start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT convergence of approximate maps and probability densities for forward and inverse problems in uncertainty quantification, International Journal for Uncertainty Quantification 12 (2022). URL: https://par.nsf.gov/biblio/10341097. doi:10.1615/Int.J.UncertaintyQuantification.2022038086.
  32. Data-consistent solutions to stochastic inverse problems using a probabilistic multi-fidelity method based on conditional densities, International Journal for Uncertainty Quantificaiton 10 (????) 399–424.
  33. D. Poole, A. E. Raftery, Inference for deterministic simulation models: The bayesian melding approach, Journal of the American Statistical Association 95 (2000) 1244–1255. doi:10.1080/01621459.2000.10474324.
  34. Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification, SIAM Journal on Scientific Computing 40 (2018) A3523–A3548. URL: https://doi.org/10.1137/18M1181675. doi:10.1137/18M1181675. arXiv:https://doi.org/10.1137/18M1181675.
  35. Parameter estimation with maximal updated densities, Computer Methods in Applied Mechanics and Engineering 407 (2023) 115906. URL: https://www.sciencedirect.com/science/article/pii/S0045782523000294. doi:https://doi.org/10.1016/j.cma.2023.115906.
  36. Data-consistent inversion for stochastic input-to-output maps, Inverse Problems 36 (2020) 085015. doi:10.1088/1361-6420/ab8f83.
  37. Learning quantities of interest from dynamical systems for observation-consistent inversion, Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230. URL: https://www.sciencedirect.com/science/article/pii/S0045782521005582. doi:https://doi.org/10.1016/j.cma.2021.114230.
  38. K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (1901) 559–572. doi:10.1080/14786440109462720.
  39. Kernel principal component analysis, in: W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Eds.), Artificial Neural Networks — ICANN’97, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997, pp. 583–588. doi:10.1007/BFb0020217.
  40. Kernel PCA and de-noising in feature spaces, in: M. J. Kearns, S. A. Solla, D. A. Cohn (Eds.), Advances in Neural Information Processing Systems 11, MIT Press, 1999, pp. 536–542. URL: https://papers.nips.cc/paper/1491-kernel-pca-and-de-noising-in-feature-spaces.
  41. H. Abdi, L. J. Williams, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2 (2010) 433–459. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101. doi:10.1002/wics.101. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101.
  42. Splines are universal solutions of linear inverse problems with generalized TV regularization, SIAM Review 59 (2017) 769–793. URL: https://doi.org/10.1137/16M1061199. doi:10.1137/16M1061199. arXiv:https://doi.org/10.1137/16M1061199.
  43. Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359–366. URL: https://www.sciencedirect.com/science/article/pii/0893608089900208. doi:https://doi.org/10.1016/0893-6080(89)90020-8.
  44. An efficient multilayer rbf neural network and its application to regression problems, Neural Computing and Applications 34 (2022) 4133–4150. URL: https://doi.org/10.1007/s00521-021-06373-0. doi:10.1007/s00521-021-06373-0.
  45. N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society 68 (1950) 337–404. URL: http://www.jstor.org/stable/1990404. doi:10.2307/1990404, full publication date: May, 1950.
  46. Hilbert space embeddings and metrics on probability measures, J. Mach. Learn. Res. 11 (2010) 1517–1561.
  47. D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, in: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, Society for Industrial and Applied Mathematics, New Orleans, LA, USA, 2007, pp. 1027–1035. URL: https://dl.acm.org/doi/10.5555/1283383.1283494.
  48. On spectral clustering: Analysis and an algorithm, in: T. G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14, MIT Press, 2002, pp. 849–856. URL: https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.
  49. U. von Luxburg, A tutorial on spectral clustering, Statistics and Computing 17 (2007) 395–416. doi:10.1007/s11222-007-9033-z.
  50. C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011). URL: https://doi.org/10.1145/1961189.1961199. doi:10.1145/1961189.1961199.
  51. J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015) 85–117. URL: https://www.sciencedirect.com/science/article/pii/S0893608014002135. doi:https://doi.org/10.1016/j.neunet.2014.09.003.
  52. F. Bach, Breaking the curse of dimensionality with convex neural networks, Journal of Machine Learning Research 18 (2017) 1–53. URL: http://jmlr.org/papers/v18/14-546.html.
  53. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems, SIAM Journal on Scientific Computing 21 (1999) 1–23. URL: https://doi.org/10.1137/S1064827595289108. doi:10.1137/S1064827595289108. arXiv:https://doi.org/10.1137/S1064827595289108.
  54. Local features and kernels for classification of texture and object categories: A comprehensive study, International Journal Of Computer Vision 73 (2007) 213–238. doi:10.1007/s11263-006-9794-4.
  55. The connection between regularization operators and support vector kernels, Neural Networks 11 (1998) 637–649. URL: https://www.sciencedirect.com/science/article/pii/S089360809800032X. doi:https://doi.org/10.1016/S0893-6080(98)00032-X.
  56. A. Rudi, L. Rosasco, Generalization properties of learning with random features, in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 30, Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/61b1fb3f59e28c67f3925f3c79be81a1-Paper.pdf.
  57. Fourier mode analysis of layers in shallow shell deformations., Computer Methods in Applied Mechanics and Engineering 190 (2001) 2943–2975.
  58. A. H. Niemi, J. Pitkäranta, Bilinear finite elements for shells: Isoparametric quadrilaterals, International Journal for Numerical Methods in Engineering 75 (2008) 212–240. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2252. doi:https://doi.org/10.1002/nme.2252. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2252.
  59. M. Malinen, On the classical shell model underlying bilinear degenerated shell finite elements: general shell geometry, International Journal for Numerical Methods in Engineering 55 (2002) 629–652.
  60. M. Malinen, J. Pitkäranta, A benchmark study of reduced-strain shell finite elements: quadratic schemes, International Journal for Numerical Methods in Engineering 48 (2000) 1637–1671.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets