Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems with Parameter Drift (2405.08307v1)
Abstract: We present a novel method for generating sequential parameter estimates and quantifying epistemic uncertainty in dynamical systems within a data-consistent (DC) framework. The DC framework differs from traditional Bayesian approaches due to the incorporation of the push-forward of an initial density, which performs selective regularization in parameter directions not informed by the data in the resulting updated density. This extends a previous study that included the linear Gaussian theory within the DC framework and introduced the maximal updated density (MUD) estimate as an alternative to both least squares and maximum a posterior (MAP) estimates. In this work, we introduce algorithms for operational settings of MUD estimation in real or near-real time where spatio-temporal datasets arrive in packets to provide updated estimates of parameters and identify potential parameter drift. Computational diagnostics within the DC framework prove critical for evaluating (1) the quality of the DC update and MUD estimate and (2) the detection of parameter value drift. The algorithms are applied to estimate (1) wind drag parameters in a high-fidelity storm surge model, (2) thermal diffusivity field for a heat conductivity problem, and (3) changing infection and incubation rates of an epidemiological model.
- Parameter Estimation with Maximal Updated Densities, Computer Methods in Applied Mechanics and Engineering 407 (2023) 115906. URL: https://www.sciencedirect.com/science/article/pii/S0045782523000294. doi:10.1016/j.cma.2023.115906.
- Tide and storm surge predictions using finite element model, Journal of Hydraulic Engineering 118 (1992) 1373–1390. doi:10.1061/(ASCE)0733-9429(1992)118:10(1373).
- Convergence Study of the Truncated Karhunen–Loeve Expansion for Simulation of Stochastic Processes, International Journal for Numerical Methods in Engineering 52 (2001) 1029–1043. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.255. doi:10.1002/nme.255, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.255.
- A probabilistic graphical model foundation for enabling predictive digital twins at scale, Nature Computational Science 1 (2021) 337–347. URL: https://doi.org/10.1038/s43588-021-00069-0. doi:10.1038/s43588-021-00069-0.
- Inverse problems in the Bayesian framework, Inverse Problems 30 (2014) 110301. URL: http://stacks.iop.org/0266-5611/30/i=11/a=110301.
- Approximation of bayesian inverse problems, SIAM Journal of Numerical Analysis 48 (2010) 322–345.
- M. C. Kennedy, A. O’Hagan, Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63 (2001) 425–464. URL: http://dx.doi.org/10.1111/1467-9868.00294. doi:10.1111/1467-9868.00294.
- An overview of robust bayesian analysis, Test 3 (1994) 5–124. URL: http://dx.doi.org/10.1007/BF02562676. doi:10.1007/BF02562676.
- B. Fitzpatrick, Bayesian analysis in inverse problems, Inverse Problems 7 (1991) 675. URL: http://stacks.iop.org/0266-5611/7/i=5/a=003.
- M. Burger, F. Lucka, Maximuma posteriori estimates in linear inverse problems with log-concave priors are proper bayes estimators, Inverse Problems 30 (2014) 114004. URL: https://doi.org/10.1088%2F0266-5611%2F30%2F11%2F114004. doi:10.1088/0266-5611/30/11/114004.
- A computational framework for infinite-dimensional bayesian inverse problems, part ii: Stochastic newton mcmc with application to ice sheet flow inverse problems, SIAM Journal on Scientific Computing 36 (2014) A1525–A1555. URL: https://doi.org/10.1137/130934805. doi:10.1137/130934805. arXiv:https://doi.org/10.1137/130934805.
- A fast and scalable method for a-optimal design of experiments for infinite-dimensional bayesian nonlinear inverse problems, SIAM Journal on Scientific Computing 38 (2016) A243–A272. URL: https://doi.org/10.1137/140992564. doi:10.1137/140992564. arXiv:https://doi.org/10.1137/140992564.
- A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest, SIAM/ASA Journal on Uncertainty Quantification 2 (2014) 174–202. URL: http://dx.doi.org/10.1137/130930406. doi:10.1137/130930406. arXiv:http://dx.doi.org/10.1137/130930406, doi:10.1137/130930406.
- Combining Push-Forward Measures and Bayes’ Rule to Construct Consistent Solutions to Stochastic Inverse Problems, SIAM Journal on Scientific Computing 40 (2018) A984–A1011. URL: https://doi.org/10.1137/16M1087229. doi:10.1137/16M1087229. arXiv:https://doi.org/10.1137/16M1087229.
- Inverse problems for physics-based process models, Annual Review of Statistics and Its Application 11 (2024) null. URL: https://doi.org/10.1146/annurev-statistics-031017-100108. doi:10.1146/annurev-statistics-031017-100108. arXiv:https://doi.org/10.1146/annurev-statistics-031017-100108.
- J. Change, D. Pollard, Conditioning as disintegration, Statistica Neerlandica 51 (1997) 287–317. doi:10.1111/1467-9574.00056.
- Y. Zhang, L. Mikelsons, Solving stochastic inverse problems with stochastic bayesflow, in: 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2023, pp. 966–972. doi:10.1109/AIM46323.2023.10196190.
- Learning quantities of interest from dynamical systems for observation-consistent inversion, Computer Methods in Applied Mechanics and Engineering 388 (2022) 114230. URL: https://www.sciencedirect.com/science/article/pii/S0045782521005582. doi:https://doi.org/10.1016/j.cma.2021.114230.
- lpsuperscript𝑙𝑝l^{p}italic_l start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT convergence of approximate maps and probability densities for forward and inverse problems in uncertainty quantification, International Journal for Uncertainty Quantification 12 (2022). URL: https://par.nsf.gov/biblio/10341097. doi:10.1615/Int.J.UncertaintyQuantification.2022038086.
- A. Tran, T. Wildey, Solving stochastic inverse problems for property–structure linkages using data-consistent inversion and machine learning, JOM 73 (2021) 72–89.
- Data-Consistent Solutions to Stochastic Inverse Problems Using a Probabilistic Multi-Fidelity Method Based on Conditional Densities, International Journal for Uncertainty Quantification 10 (2020). URL: https://www.dl.begellhouse.com/journals/52034eb04b657aea,4c71a7d5794d3085,763087fa0bbe44dd.html. doi:10.1615/Int.J.UncertaintyQuantification.2020030092, publisher: Begel House Inc.
- T. Butler, H. Hakula, What do we hear from a drum? A data-consistent approach to quantifying irreducible uncertainty on model inputs by extracting information from correlated model output data, Computer Methods in Applied Mechanics and Engineering 370 (2020) 113228. doi:10.1016/j.cma.2020.113228.
- D. Poole, A. E. Raftery, Inference for deterministic simulation models: The bayesian melding approach, Journal of the American Statistical Association 95 (2000) 1244–1255. doi:10.1080/01621459.2000.10474324.
- Convergence of probability densities using approximate models for forward and inverse problems in uncertainty quantification, SIAM Journal on Scientific Computing 40 (2018) A3523–A3548. URL: https://doi.org/10.1137/18M1181675. doi:10.1137/18M1181675. arXiv:https://doi.org/10.1137/18M1181675.
- Data-consistent inversion for stochastic input-to-output maps, Inverse Problems 36 (2020) 085015. doi:10.1088/1361-6420/ab8f83.
- K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (1901) 559–572. doi:10.1080/14786440109462720.
- H. Hotelling, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24 (1933) 417–441. doi:10.1037/h0071325.
- I. T. Jolliffe, Principal Component Analysis for Special Types of Data, in: Principal Component Analysis, Springer Series in Statistics, Springer, New York, NY, 2002, pp. 338–372. doi:10.1007/0-387-22440-8_13.
- D. A. Stephens, Bayesian retrospective Multiple-Changepoint identification, J. R. Stat. Soc. Ser. C Appl. Stat. 43 (1994) 159–178.
- D. Barry, J. A. Hartigan, A bayesian analysis for change point problems, J. Am. Stat. Assoc. 88 (1993) 309–319.
- SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17 (2020) 261–272. doi:10.1038/s41592-019-0686-2.
- Bandwidth selection for kernel density estimation: a review of fully automatic selectors, AStA Advances in Statistical Analysis 97 (2013) 403–433. URL: https://doi.org/10.1007/s10182-013-0216-y. doi:10.1007/s10182-013-0216-y.
- Sequential data-consistent model inversion, in: NeurIPS 2023 Workshop on Deep Learning and Inverse Problems, 2023. URL: https://openreview.net/forum?id=5NoVk8nBWc.
- S. Kullback, R. A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics 22 (1951) 79–86.
- T. van Erven, P. Harremoes, Renyi divergence and kullback-leibler divergence, IEEE Transactions on Information Theory 60 (2014) 3797–3820.
- Optimal Experimental Design Using a Consistent Bayesian Approach, ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg 4 (2017) 011005. URL: https://doi.org/10.1115/1.4037457. doi:10.1115/1.4037457. arXiv:https://asmedigitalcollection.asme.org/risk/article-pdf/4/1/011005/5959953/risk_004_01_011005.pdf.
- J. R. Garratt, Review of Drag Coefficients over Oceans and Continents, Monthly Weather Review 105 (1977) 915–929. URL: https://journals.ametsoc.org/view/journals/mwre/105/7/1520-0493_1977_105_0915_rodcoo_2_0_co_2.xml. doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2, publisher: American Meteorological Society Section: Monthly Weather Review.
- Wind and waves in extreme hurricanes, Journal of Geophysical Research: Oceans 117 (2012). URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2012JC007983. doi:10.1029/2012JC007983, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2012JC007983.
- K. M. Bryant, M. Akbar, An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling, Journal of Marine Science and Engineering 4 (2016) 58. URL: https://www.mdpi.com/2077-1312/4/3/58. doi:10.3390/jmse4030058, number: 3 Publisher: Multidisciplinary Digital Publishing Institute.
- Real-Time Forecasting and Visualization of Hurricane Waves and Storm Surge Using SWAN+ADCIRC and FigureGen, Computational Challenges in the Geosciences (2013) 49–70. doi:10.1007/978-1-4614-7434-0_3.
- A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation, Monthly Weather Review 138 (2010) 345–377. doi:10.1175/2009MWR2906.1.
- A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita, Monthly Weather Review 138 (2010) 378–404. doi:10.1175/2009MWR2907.1.
- Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis, and Validation in Southern Louisiana, Monthly Weather Review 139 (2011) 2488–2522. doi:10.1175/2011MWR3611.1.
- Definition and solution of a stochastic inverse problem for the manning’s n𝑛nitalic_n parameter field in hydrodynamic models, Adv. in Water Resour. 78 (2015) 60 – 79. doi:doi:10.1016/j.advwatres.2015.01.011.
- A measure-theoretic algorithm for estimating bottom friction in a coastal inlet: Case study of bay st. louis during hurricane gustav (2008), Monthly Weather Review 145 (2017) 929–954. URL: https://doi.org/10.1175/MWR-D-16-0149.1. doi:10.1175/MWR-D-16-0149.1. arXiv:https://doi.org/10.1175/MWR-D-16-0149.1.
- Scalability of an Unstructured Grid Continuous Galerkin Based Hurricane Storm Surge Model, Journal of Scientific Computing 46 (2011) 329–358. URL: https://doi.org/10.1007/s10915-010-9402-1. doi:10.1007/s10915-010-9402-1.
- Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in Computing Hurricane Waves and Surge, Journal of Scientific Computing 52 (2012) 468–497. URL: https://doi.org/10.1007/s10915-011-9555-6. doi:10.1007/s10915-011-9555-6.
- G. D. Egbert, S. Y. Erofeeva, Efficient Inverse Modeling of Barotropic Ocean Tides, Journal of Atmospheric and Oceanic Technology 19 (2002) 183–204. URL: https://journals.ametsoc.org/view/journals/atot/19/2/1520-0426_2002_019_0183_eimobo_2_0_co_2.xml. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, publisher: American Meteorological Society Section: Journal of Atmospheric and Oceanic Technology.
- OceanMesh2D 1.0: MATLAB-Based Software for Two-Dimensional Unstructured Mesh Generation in Coastal Ocean Modeling, Geoscientific Model Development 12 (2019) 1847–1868. URL: https://gmd.copernicus.org/articles/12/1847/2019/. doi:10.5194/gmd-12-1847-2019, publisher: Copernicus GmbH.
- The NCEP Climate Forecast System Version 2, Journal of Climate 27 (2014) 2185–2208. URL: https://journals.ametsoc.org/view/journals/clim/27/6/jcli-d-12-00823.1.xml. doi:10.1175/JCLI-D-12-00823.1, publisher: American Meteorological Society Section: Journal of Climate.
- Basix: a runtime finite element basis evaluation library, Journal of Open Source Software 7 (2022a) 3982. doi:10.21105/joss.03982.
- Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes, ACM Transactions on Mathematical Software 48 (2022b) 18:1–18:23. doi:10.1145/3524456.
- Unified Form Language: A domain-specific language for weak formulations of partial differential equations, ACM Transactions on Mathematical Software 40 (2014). doi:10.1145/2566630.
- DesignSafe: New Cyberinfrastructure for Natural Hazards Engineering, Natural Hazards Review 18 (2017) 06017001. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000246. doi:10.1061/(ASCE)NH.1527-6996.0000246, publisher: American Society of Civil Engineers.