Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Deriving the non-perturbative gravitational dual of quantum Liouville theory from BCFT operator algebra (2403.03179v3)

Published 5 Mar 2024 in hep-th, cond-mat.str-el, gr-qc, math-ph, math.MP, and quant-ph

Abstract: We demonstrate that, by utilizing the boundary conformal field theory (BCFT) operator algebra of the Liouville CFT, one can express its path-integral on any Riemann surface as a three dimensional path-integral with appropriate boundary conditions, generalising the recipe for rational CFTs \cite{Hung:2019bnq, Brehm:2021wev, Chen:2022wvy, Cheng:2023kxh}. This serves as a constructive method for deriving the \textit{quantum} holographic dual of the CFT, which reduces to Einstein gravity in the large central charge limit. As a byproduct, the framework provides an explicit discrete state-sum of a 3D non-chiral topological theory constructed from quantum $6j$ symbols of $\mathcal{U}_q(sl(2,\mathbb{R}))$ with non-trivial boundary conditions, representing a long-sought non-perturbative discrete formulation of 3D pure gravity with negative cosmological constant, at least within a class of three manifolds. This constitutes the first example of an exact holographic tensor network that reproduces a known irrational CFT with a precise quantum gravitational interpretation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. L. Y. Hung and G. Wong, Phys. Rev. D 104, 026012 (2021), arXiv:1912.11201 [hep-th] .
  2. E. M. Brehm and I. Runkel, J. Phys. A 55, 235001 (2022), arXiv:2112.01563 [cond-mat.stat-mech] .
  3. H. Dorn and H. J. Otto, Nucl. Phys. B 429, 375 (1994), arXiv:hep-th/9403141 .
  4. A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl. Phys. B 477, 577 (1996), arXiv:hep-th/9506136 .
  5. B. Ponsot and J. Teschner,   (1999), arXiv:hep-th/9911110 .
  6. J. Teschner, PoS tmr2000, 041 (2000), arXiv:hep-th/0009138 .
  7. B. Ponsot and J. Teschner, Nucl. Phys. B 622, 309 (2002), arXiv:hep-th/0110244 .
  8. D. Aasen, P. Fendley,  and R. S. K. Mong, “Topological Defects on the Lattice: Dualities and Degeneracies,”  (2020), arXiv:2008.08598 [cond-mat.stat-mech] .
  9. H. Ma and S.-S. Lee, SciPost Phys. 12, 046 (2022), arXiv:2009.11880 [hep-th] .
  10. M. A. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005), arXiv:cond-mat/0404617 .
  11. V. G. Turaev and O. Y. Viro, Topology 31, 865 (1992).
  12. G. W. Moore and N. Seiberg, Commun. Math. Phys. 123, 177 (1989).
  13. D. Gaiotto and J. Kulp, JHEP 02, 132 (2021), arXiv:2008.05960 [hep-th] .
  14. W. Ji and X.-G. Wen, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 [cond-mat.str-el] .
  15. L. D. Faddeev, in Conference Moshe Flato (2000) pp. 149–156, arXiv:math/9912078 .
  16. G. Ponzano and T. E. Regge,   (1968).
  17. H. Ooguri and N. Sasakura, Mod. Phys. Lett. A 6, 3591 (1991), arXiv:hep-th/9108006 .
  18. L. Freidel and D. Louapre, Class. Quant. Grav. 21, 5685 (2004), arXiv:hep-th/0401076 .
  19. J. W. Barrett and I. Naish-Guzman, Class. Quant. Grav. 26, 155014 (2009), arXiv:0803.3319 [gr-qc] .
  20. J. Ellegaard Andersen and R. Kashaev, Commun. Math. Phys. 330, 887 (2014), arXiv:1109.6295 [math.QA] .
  21. J. Ellegaard Andersen and R. Kashaev,   (2013), arXiv:1305.4291 [math.GT] .
  22. G. Wong,   (2022), arXiv:2212.03193 [hep-th] .
  23. Y. Nakayama, Int. J. Mod. Phys. A 19, 2771 (2004), arXiv:hep-th/0402009 .
  24. J. Teschner and G. Vartanov, Lett. Math. Phys. 104, 527 (2014), arXiv:1202.4698 [hep-th] .
  25. J. Murakami and A. Ushijima,   (2004), arXiv:math/0402087 [math.MG] .
  26. J. D. Brown and M. Henneaux, Commun. Math. Phys. 104, 207 (1986).
  27. G. Hayward, Phys. Rev. D 47, 3275 (1993).
  28. T. Takayanagi and K. Tamaoka, JHEP 02, 167 (2020), arXiv:1912.01636 [hep-th] .
  29. L. McGough and H. Verlinde, JHEP 11, 208 (2013), arXiv:1308.2342 [hep-th] .
  30. B. Swingle, Phys. Rev. D 86, 065007 (2012), arXiv:0905.1317 [cond-mat.str-el] .
  31. C. Akers and A. Y. Wei,   (2024), arXiv:2402.05910 [hep-th] .
  32. M. Van Raamsdonk,   (2018), arXiv:1809.01197 [hep-th] .
  33. J. Lin,   (2021), arXiv:2107.12634 [hep-th] .
  34. S. He, Phys. Rev. D 99, 026005 (2019), arXiv:1711.00624 [hep-th] .
  35. T. Hartman,   (2013), arXiv:1303.6955 [hep-th] .
  36. T. Faulkner,   (2013), arXiv:1303.7221 [hep-th] .
  37. F. A. Smirnov and A. B. Zamolodchikov, Nucl. Phys. B 915, 363 (2017), arXiv:1608.05499 [hep-th] .
  38. K. Krasnov, Adv. Theor. Math. Phys. 4, 929 (2000), arXiv:hep-th/0005106 .
  39. L. Freidel and K. Krasnov, J. Math. Phys. 45, 2378 (2004), arXiv:hep-th/0205091 .
  40. T. Takayanagi, Phys. Rev. Lett. 107, 101602 (2011), arXiv:1105.5165 [hep-th] .
  41. T. Numasawa and I. Tsiares, JHEP 08, 156 (2022), arXiv:2202.01633 [hep-th] .
  42. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  43. M. Srednicki, Phys. Rev. E 50 (1994), 10.1103/PhysRevE.50.888, arXiv:cond-mat/9403051 .
  44. A. Belin and J. de Boer, Class. Quant. Grav. 38, 164001 (2021), arXiv:2006.05499 [hep-th] .
  45. E. J. Martinec,   (1998), arXiv:hep-th/9809021 .
  46. S. Carlip, Class. Quant. Grav. 15, 3609 (1998), arXiv:hep-th/9806026 .
  47. W. Z. Chua and Y. Jiang,   (2023), arXiv:2309.05126 [hep-th] .
  48. A. B. Zamolodchikov and A. B. Zamolodchikov,  , 280 (2001), arXiv:hep-th/0101152 .
  49. T. Hartman and J. Maldacena, JHEP 05, 014 (2013), arXiv:1303.1080 [hep-th] .
  50. H.Verlinde, “Ope and the black hole information paradox,” talk at the conference Gravitational Emergence in AdS/CFT, BIRS, October 2021. Video available at https://www.birs.ca.
  51. H. Verlinde,   (2022), arXiv:2210.08306 [hep-th] .
  52. J. Chandra and T. Hartman, JHEP 05, 109 (2023), arXiv:2302.02446 [hep-th] .
  53. K. Goto and T. Takayanagi, JHEP 10, 153 (2017), arXiv:1704.00053 [hep-th] .
  54. Y. U. Taylor and C. T. Woodward,   (2005), arXiv:math/0305113 [math.QA] .
  55. L. D. Faddeev and R. M. Kashaev, J. Phys. A 35, 4043 (2002), arXiv:hep-th/0201049 .
  56. G. Turiaci and H. Verlinde, JHEP 12, 110 (2016), arXiv:1603.03020 [hep-th] .
  57. N. Seiberg, Prog. Theor. Phys. Suppl. 102, 319 (1990).
  58. L. Eberhardt,   (2023), arXiv:2309.11540 [hep-th] .
  59. I. Runkel, Nucl. Phys. B 549, 563 (1999), arXiv:hep-th/9811178 .
  60. V. B. Petkova, JHEP 04, 061 (2010), arXiv:0912.5535 [hep-th] .
  61. E. Apresyan and G. Sarkissian, JHEP 05, 131 (2018), arXiv:1802.01995 [hep-th] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com