Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 11 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 457 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms (2403.03153v1)

Published 5 Mar 2024 in quant-ph

Abstract: Combinatorial optimization is a challenging problem applicable in a wide range of fields from logistics to finance. Recently, quantum computing has been used to attempt to solve these problems using a range of algorithms, including parameterized quantum circuits, adiabatic protocols, and quantum annealing. These solutions typically have several challenges: 1) there is little to no performance gain over classical methods, 2) not all constraints and objectives may be efficiently encoded in the quantum ansatz, and 3) the solution domain of the objective function may not be the same as the bit strings of measurement outcomes. This work presents "non-native hybrid algorithms" (NNHA): a framework to overcome these challenges by integrating quantum and classical resources with a hybrid approach. By designing non-native quantum variational ansatzes that inherit some but not all problem structure, measurement outcomes from the quantum computer can act as a resource to be used by classical routines to indirectly compute optimal solutions, partially overcoming the challenges of contemporary quantum optimization approaches. These methods are demonstrated using a publicly available neutral-atom quantum computer on two simple problems of Max $k$-Cut and maximum independent set. We find improvements in solution quality when comparing the hybrid algorithm to its ``no quantum" version, a demonstration of a "comparative advantage".

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv:1411.4028 [quant-ph] .
  2. T. Albash and D. A. Lidar, Reviews of Modern Physics 90, 10.1103/revmodphys.90.015002 (2018).
  3. K. Marwaha, Quantum 5, 437 (2021).
  4. S. Hadfield, ACM Transactions on Quantum Computing 2, 1–21 (2021).
  5. R. LaRose, E. Rieffel, and D. Venturelli, Quantum Machine Intelligence 4, 10.1007/s42484-022-00069-x (2022).
  6. A. Lucas, Frontiers in Physics 2, 10.3389/fphy.2014.00005 (2014).
  7. S. Okada, M. Ohzeki, and S. Taguchi, Scientific Reports 9, 13036 (2019).
  8. Cuda quantum - nvidia cuda quantum documentation.
  9. Three truths and the advent of hybrid quantum computing, https://medium.com/d-wave/three-truths-and-the-advent-of-hybrid-quantum-computing-1941ba46ff8c.
  10. J. Wurtz and P. J. Love, IEEE Transactions on Quantum Engineering 2, 1 (2021a).
  11. F. Wagner, J. Nüßlein, and F. Liers, Enhancing quantum algorithms for quadratic unconstrained binary optimization via integer programming (2023), arXiv:2302.05493 [quant-ph] .
  12. Bloqade-python-MIS, https://github.com/QuEraComputing/bloqade-python-mis/tree/main/postprocessing_implementations (2024).
  13. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
  14. J. Wurtz and P. Love, Phys. Rev. A 103, 042612 (2021b).
  15. G. Nannicini, Physical Review E 99, 10.1103/physreve.99.013304 (2019).
  16. M. J. D. Powell (1994).
  17. S. H. Sack and D. J. Egger, arXiv e-prints , arXiv:2307.14427 (2023), arXiv:2307.14427 [quant-ph] .
  18. M. X. Goemans and D. P. Williamson, J. ACM 42, 1115–1145 (1995).
  19. G. E. Crooks, Performance of the quantum approximate optimization algorithm on the maximum cut problem (2018), arXiv:1811.08419 [quant-ph] .
  20. J. Wurtz and P. J. Love, Quantum 6, 635 (2022).
  21. J. Wurtz and D. Lykov, Phys. Rev. A 104, 052419 (2021).
  22. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983), https://www.science.org/doi/pdf/10.1126/science.220.4598.671 .
  23. E. Farhi and A. W. Harrow, Quantum supremacy through the quantum approximate optimization algorithm (2019), arXiv:1602.07674 [quant-ph] .
  24. E. H. Lieb and D. W. Robinson, Communications in Mathematical Physics 28, 251–257 (1972).
  25. D. Gamarnik, Proceedings of the National Academy of Sciences 118, e2108492118 (2021), https://www.pnas.org/doi/pdf/10.1073/pnas.2108492118 .
  26. M. M. Halldórsson and J. Radhakrishnan, Algorithmica 18, 145–163 (1997).
  27. C. J. Geyer (1991).
  28. H. Hoffmann and D. W. Payton, Scientific Reports 8, 10.1038/s41598-018-20275-7 (2018).
  29. W. K. Hastings, Biometrika 57, 97–109 (1970).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.