Entanglement Entropy of a Scalar Field in a Squeezed State (2403.03136v3)
Abstract: We study the entanglement entropy within a spherical region for a free scalar field in a squeezed state in 3+1 dimensions. We show that, even for small squeezing, a volume term appears, whose coefficient is essentially independent of the field mass. This is in line with Page's argument that the entanglement entropy in an arbitrary quantum state is proportional to the number of degrees of freedom of the smaller subsystem. It follows that squeezed states can be considered as arbitrary quantum states, in contrast to the ground or coherent states that give rise to entanglement entropy that is dominated by a term proportional to the area of the entangling surface.
- L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes”, Phys. Rev. D 34, 373-383 (1986)
- M. Srednicki, “Entropy and area”, Phys. Rev. Lett. 71, 666 (1993) [hep-th/9303048].
- T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state”, Phys. Rev. Lett. 75, 1260-1263 (1995) [arXiv:gr-qc/9504004 [gr-qc]].
- M. Van Raamsdonk, “Building up spacetime with quantum entanglement”, Gen. Rel. Grav. 42, 2323-2329 (2010) [arXiv:1005.3035 [hep-th]].
- T. Jacobson, “Entanglement Equilibrium and the Einstein Equation”, Phys. Rev. Lett. 116, no.20, 201101 (2016) [arXiv:1505.04753 [gr-qc]].
- N. Lashkari, M. B. McDermott and M. Van Raamsdonk, “Gravitational dynamics from entanglement “thermodynamics””, JHEP 04, 195 (2014) [arXiv:1308.3716 [hep-th]].
- T. Faulkner, M. Guica, T. Hartman, R. C. Myers and M. Van Raamsdonk, “Gravitation from Entanglement in Holographic CFTs”. JHEP 03, 051 (2014) [arXiv:1312.7856 [hep-th]].
- D. N. Page, “Average entropy of a subsystem”, Phys. Rev. Lett. 71, 1291-1294 (1993) [arXiv:gr-qc/9305007 [gr-qc]].
- D. N. Page, “Information in black hole radiation”, Phys. Rev. Lett. 71, 3743-3746 (1993) [arXiv:hep-th/9306083 [hep-th]].
- P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory”, J. Stat. Mech. 0406, P06002 (2004) [arXiv:hep-th/0405152 [hep-th]].
- H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory”, J. Phys. A 42, 504007 (2009) [arXiv:0905.2562 [hep-th]].
- P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory”, J. Phys. A 42, 504005 (2009) [arXiv:0905.4013 [cond-mat.stat-mech]].
- D. Katsinis and G. Pastras, “An Inverse Mass Expansion for Entanglement Entropy in Free Massive Scalar Field Theory”, Eur. Phys. J. C 78, no.4, 282 (2018) [arXiv:1711.02618 [hep-th]].
- D. Katsinis and G. Pastras, “Area Law Behaviour of Mutual Information at Finite Temperature”, [arXiv:1907.04817 [hep-th]].
- D. Katsinis and G. Pastras, “An Inverse Mass Expansion for the Mutual Information in Free Scalar QFT at Finite Temperature”, JHEP 02, 091 (2020) [arXiv:1907.08508 [hep-th]].
- E. Benedict and S. Y. Pi, “Entanglement entropy of nontrivial states”, Annals Phys. 245, 209-224 (1996) [arXiv:hep-th/9505121 [hep-th]].
- D. Katsinis and G. Pastras, “Entanglement in harmonic systems at coherent states”, [arXiv:2206.05781 [hep-th]].
- D. Katsinis, G. Pastras and N. Tetradis, “Entanglement of harmonic systems in squeezed states”, JHEP 10, 039 (2023) [arXiv:2304.04241 [hep-th]].
- K. Boutivas, G. Pastras and N. Tetradis, “Entanglement and expansion”, JHEP 05 (2023), 199 [arXiv:2302.14666 [hep-th]].
- E. Bianchi, L. Hackl and N. Yokomizo, “Entanglement entropy of squeezed vacua on a lattice”, Phys. Rev. D 92, no.8, 085045 (2015) [arXiv:1507.01567 [hep-th]].
- G. Adesso, S. Ragy and A. R. Lee, “Continuous Variable Quantum Information: Gaussian States and Beyond”, Open Systems and Information Dynamics 21 01n02 1440001 (2014) [arXiv:1401.4679 [quant-ph]]
- E. Bianchi, L. Hackl and M. Kieburg, “Page curve for fermionic Gaussian states”, Phys. Rev. B 103, no.24, L241118 (2021) [arXiv:2103.05416 [quant-ph]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.