Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

SIC-POVMs from Stark Units: Dimensions n^2+3=4p, p prime (2403.02872v1)

Published 5 Mar 2024 in quant-ph, math.FA, and math.NT

Abstract: The existence problem for maximal sets of equiangular lines (or SICs) in complex Hilbert space of dimension $d$ remains largely open. In a previous publication (arXiv:2112.05552) we gave a conjectural algorithm for how to construct a SIC if $d = n2+3 = p$, a prime number. Perhaps the most surprising number-theoretical aspect of that algorithm is the appearance of Stark units in a key role: a single Stark unit from a ray class field extension of a real quadratic field serves as a seed from which the SIC is constructed. The algorithm can be modified to apply to all dimensions $d = n2+3$. Here we focus on the case when $d= n2+3 = 4p$, $p$ prime, for two reasons. First, special measures have to be taken on the Hilbert space side of the problem when the dimension is even. Second, the degrees of the relevant ray class fields are `smooth' in a sense that facilitates exact calculations. As a result the algorithm becomes easier to explain. We give solutions for seventeen different dimensions of this form, reaching $d = 39604$. Several improvements relative to our previous publication are reported, but we cannot offer a proof that the algorithm works for any dimensions where it has not been tested.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Gerhard Zauner. Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, Universität Wien, 1999. English translation in Ref. [2].
  2. Gerhard Zauner. Quantum designs: Foundations of a non-commutative design theory. International Journal of Quantum Information, 9(1):445–507, February 2011. doi:10.1142/S0219749911006776.
  3. Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 45(6):2171–2180, June 2004. doi:10.1063/1.1737053.
  4. Hermann Weyl. Theory of Groups and Quantum Mechanics. E. P. Dutton, New York, 1932.
  5. Symmetric informationally complete positive-operator-valued measures: A new computer study. Journal of Mathematical Physics, 51(4):042203, April 2010. doi:10.1063/1.3374022.
  6. Andrew J. Scott. SICs: Extending the list of solutions. arXiv:1703.03993, 2017. URL: https://arxiv.org/abs/1703.03993.
  7. Galois automorphisms of a symmetric measurement. Quantum Information and Computation, 13(7–8):672–720, July 2013. doi:10.26421/QIC13.7-8-8.
  8. Generating ray class fields of real quadratic fields via complex equiangular lines. Acta Arithmetica, 192(3):211–233, 2020. doi:10.4064/aa180508-21-6.
  9. Class field theory for orders of number fields. arXiv:2212.09177 [math.NT], December 2022.
  10. Fibonacci-Lucas SIC-POVMs. Journal of Mathematical Physics, 58(12):122201, December 2017. doi:10.1063/1.4995444.
  11. The Magma Algebra System I: The User Language. Journal of Symbolic Computation, 24(3–4):235–265, 1997. doi:10.1006/jsco.1996.0125.
  12. David Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8(10):437–479, July 1902. doi:10.1090/S0002-9904-1902-00923-3.
  13. Harold M. Stark. L𝐿Litalic_L-functions at s=1𝑠1s=1italic_s = 1. III. Totally real fields and Hilbert’s twelfth problem. Advances in Mathematics, 22(1):64–84, October 1976. doi:10.1016/0001-8708(76)90138-9.
  14. Gene S. Kopp. SIC-POVMs and the Stark conjectures. International Mathematics Research Notices, 2021(18):13812–13838, September 2021. doi:10.1093/imrn/rnz153.
  15. SIC-POVMs from Stark units: Prime dimensions n2+3superscript𝑛23n^{2}+3italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3. Journal of Mathematical Physics, 63(11):112205, November 2022. doi:10.1063/5.0083520.
  16. D. Marcus Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group. Journal of Mathematical Physics, 46(5):052107, May 2005. doi:10.1063/1.1896384.
  17. Steven T. Flammia. On SIC-POVMs in prime dimensions. Journal of Physics A: Mathematical and General, 39(43):13483, October 2006. doi:10.1088/0305-4470/39/43/007.
  18. The monomial representations of the Clifford group. Quantum Information and Computation, 12(5&6):0404–043, May 2012. doi:10.26421/QIC12.5-6-3.
  19. Eugene P. Wigner. Normal form of antiunitary operators. Journal of Mathematical Physics, 1(5):409–413, September 1960. doi:10.1063/1.1703672.
  20. Huangjun Zhu. Twin Heisenberg-Weyl groups and the Clifford hierarchy. Unpublished, 2015.
  21. Aidan Roy. Complex Lines with Restricted Angles. PhD thesis, University of Waterloo, 2005.
  22. Mahdad Khatirinejad. On Weyl-Heisenberg orbits of equiangular lines. Journal of Algebraic Combinatorics, 28(3):333–349, 2008. doi:10.1007/s10801-007-0104-1.
  23. Computational class field theory. In Joseph P. Buhler and Peter Stevenhagen, editors, Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, volume 44 of MSRI Publications, pages 497–534. Cambridge University Press, Cambridge, 2008.
  24. James S. Milne. Class field theory (v4.01). Online available at www.jmilne.org/math/CourseNotes/, 2011. Course notes. URL: https://www.jmilne.org/math/CourseNotes/CFT.pdf.
  25. John C. Tate. Les Conjectures de Stark sur les Fonctions L𝐿Litalic_L d’Artin en s=0𝑠0s=0italic_s = 0, volume 47 of Progress in Mathematics. Birkhäuser, Basel, 1984.
  26. James S. Milne. Algebraic number theory (v3.08). Online available at www.jmilne.org/math/CourseNotes/, 2020. Course notes. URL: https://www.jmilne.org/math/CourseNotes/ANT.pdf.
  27. Harold M. Stark. L𝐿Litalic_L-functions at s=1𝑠1s=1italic_s = 1. IV. First derivatives at s=0𝑠0s=0italic_s = 0. Advances in Mathematics, 35(3):197–235, 1980. doi:10.1016/0001-8708(80)90049-3.
  28. Xavier-François Roblot. Index formulae for Stark units and their solutions. Pacific Journal of Mathematics, 266(2):391–422, December 2013. doi:10.2140/pjm.2013.266.391.
  29. Ingemar Bengtsson. Algebraic units, anti-unitary symmetries, and a small catalogue of SICs. Quantum Information and Computation, 20(5–6):400–417, May 2020. doi:10.26421/QIC20.5-6-3.
  30. Georges Gras. Class field theory. From theory to practice. Springer Monographs in Mathematics. Springer-Verlag, Heidelberg, 2003. Corrected second printing. doi:10.1007/978-3-662-11323-3.
  31. Methods of Homological Algebra. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg, 2nd edition, 2003. doi:10.1007/978-3-662-12492-5.
  32. Markus Grassl. SIC-POVMs. Online available at http://sicpovm.markus-grassl.de/.
  33. Dale Husemöller. Elliptic Curves, volume 111 of Graduate Texts in Mathematics. Springer, New York, 2nd edition, 2004. doi:10.1007/b97292.
  34. The PARI Group. PARI/GP version 2.15.2. Available from http://pari.math.u-bordeaux.fr/, 2023. Université de Bordeaux.
  35. Nemo/Hecke: Computer algebra and number theory packages for the Julia programming language. In ISSAC ’17: Proceedings of the 2017 ACM International Symposium on Symbolic Algebraic Computation, pages 157–164. ACM, July 2017. doi:10.1145/3087604.3087611.
  36. Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states. Entropy, 16(3):1484–1492, March 2014. doi:10.3390/e16031484.
  37. Arthur Wieferich. Zum letzten Fermatschen Theorem. Journal für die reine und angewandte Mathematik, 136:293–302, 1909.
  38. Fibonacci numbers and Fermat’s last theorem. Acta Artihmetica, 60(4):371–388, 1992. doi:10.4064/aa-60-4-371-388.
  39. Georges Gras. Les θ𝜃\thetaitalic_θ-régulateurs locaux d’un nombre algébrique : Conjectures p𝑝pitalic_p-adiques. Canadian Journal of Mathematics, 68(3):571–624, June 2016. doi:doi.org/10.4153/CJM-2015-026-3.
  40. Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition, 1997. doi:10.1007/978-1-4612-1934-7.
  41. Thøger Bang. Congruence properties of Tchebycheff polynomials. Mathematica Scandinavica, 2(2):327–333, 1954. doi:10.7146/math.scand.a-10418.
  42. Henri Cohen. Number Theory, Volume I: Tools and Diophantine Equations, volume 239 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2007. doi:10.1007/978-0-387-49923-9.
  43. Loo Keng Hua. Introduction to Number Theory. Springer, Berlin/Heidelberg, 1982. doi:10.1007/978-3-642-68130-1.
  44. An investigation of bounds for the regulator of quadratic fields. Experimental Mathematics, 4(3):211–225, 1995. URL: http://eudml.org/doc/222883.
  45. Loo-Keng Hua. On the least solution of Pell’s equation. Bulletin of the American Mathematical Society, 48(10):731–735, October 1942.
  46. Jean-Pierre Serre. Local Fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, 1979. doi:10.1007/978-1-4757-5673-9.
  47. A database of local fields. Journal of Symbolic Computation, 41(1):80–97, January 2006. doi:10.1016/j.jsc.2005.09.003.
  48. Neal Koblitz. p𝑝pitalic_p-adic Numbers, p𝑝pitalic_p-adic Analysis, and Zeta-Functions, volume 58 of Graduate Texts in Mathematics. Springer, New York, 2nd edition, 1984. doi:10.1007/978-1-4612-1112-9.
  49. The SIC question: History and state of play. Axioms, 6(3):21, 2017. doi:10.3390/axioms6030021.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 19 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube