Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Dual-Level Cancelable Framework for Palmprint Verification and Hack-Proof Data Storage (2403.02680v1)

Published 5 Mar 2024 in cs.CR

Abstract: In recent years, palmprints have been widely used for individual verification. The rich privacy information in palmprint data necessitates its protection to ensure security and privacy without sacrificing system performance. Existing systems often use cancelable technologies to protect templates, but these technologies ignore the potential risk of data leakage. Upon breaching the system and gaining access to the stored database, a hacker could easily manipulate the stored templates, compromising the security of the verification system. To address this issue, we propose a dual-level cancelable palmprint verification framework in this paper. Specifically, the raw template is initially encrypted using a competition hashing network with a first-level token, facilitating the end-to-end generation of cancelable templates. Different from previous works, the protected template undergoes further encryption to differentiate the second-level protected template from the first-level one. The system specifically creates a negative database (NDB) with the second-level token for dual-level protection during the enroLLMent stage. Reversing the NDB is NP-hard and a fine-grained algorithm for NDB generation is introduced to manage the noise and specified bits. During the verification stage, we propose an NDB matching algorithm based on matrix operation to accelerate the matching process of previous NDB methods caused by dictionary-based matching rules. This approach circumvents the need to store templates identical to those utilized for verification, reducing the risk of potential data leakage. Extensive experiments conducted on public palmprint datasets have confirmed the effectiveness and generality of the proposed framework. Upon acceptance of the paper, the code will be accessible at https://github.com/Deep-Imaging-Group/NPR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. A. K. Jain, D. Deb, and J. J. Engelsma, “Biometrics: Trust, but verify,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 3, pp. 303–323, 2021.
  2. Y. Wang, L. Fei, S. Zhao, Q. Zhu, J. Wen, W. Jia, and I. Rida, “Dense hybrid attention network for palmprint image super-resolution,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–13, 2024.
  3. L. Fei, B. Zhang, Y. Xu, and L. Yan, “Palmprint recognition using neighboring direction indicator,” IEEE Transactions on Human-Machine Systems, vol. 46, no. 6, pp. 787–798, 2016.
  4. Z. Yang, L. Leng, T. Wu, M. Li, and J. Chu, “Multi-order texture features for palmprint recognition,” Artifical Intelligence Review, vol. 56, no. 2, pp. 995–1011, 2023.
  5. L. Fei, Y. Xu, and D. Zhang, “Half-orientation extraction of palmprint features,” Pattern Recognition Letters, vol. 69, pp. 35–41, 2016.
  6. L. Fei, G. Lu, W. Jia, S. Teng, and D. Zhang, “Feature extraction methods for palmprint recognition: A survey and evaluation,” IEEE Transactions on Systems Man Cybernetics: Systems, vol. 49, no. 2, pp. 346–363, 2018.
  7. X. Dong, M. K. Khan, L. Leng, and A. B. J. Teoh, “Co-learning to hash palm biometrics for flexible iot deployment,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23 786–23 794, 2022.
  8. L. Su, L. Fei, S. Zhao, J. Wen, J. Zhu, and S. Teng, “Learning modality-invariant binary descriptor for crossing palmprint to palm-vein recognition,” Pattern Recognition Letters, vol. 172, pp. 1–7, 2023.
  9. M. J. Lee, Z. Jin, S.-N. Liang, and M. Tistarelli, “Alignment-robust cancelable biometric scheme for iris verification,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 3449–3464, 2022.
  10. I. 30136, “Information technology—security techniques—performance testing of biometric template protection schemes, international organization for standardization,” 2018.
  11. Z. Yang, H. Huangfu, L. Leng, B. Zhang, A. B. J. Teoh, and Y. Zhang, “Comprehensive competition mechanism in palmprint recognition,” IEEE Transactions on Information Forensics and Security, 2023.
  12. D. Zhao, W. Luo, R. Liu, and L. Yue, “A fine-grained algorithm for generating hard-toreverse negative databases,” in 2015 International Workshop on Artificial Immune Systems (AIS).   IEEE, 2015, pp. 1–8.
  13. D. Zhao, X. Hu, S. Xiong, J. Tian, J. Xiang, J. Zhou, and H. Li, “K-means clustering and knn classification based on negative databases,” Applied Soft Computing, vol. 110, p. 107732, 2021.
  14. L. Leng and A. B. J. Teoh, “Alignment-free row-co-occurrence cancelable palmprint fuzzy vault,” Pattern Recognition, vol. 48, no. 7, pp. 2290–2303, 2015.
  15. L. Leng and J. Zhang, “Dual-key-binding cancelable palmprint cryptosystem for palmprint protection and information security,” Journal of Network and Computer Applications, vol. 34, no. 6, pp. 1979–1989, 2011.
  16. L. Fei, W. K. Wong, S. Zhao, J. Wen, J. Zhu, and Y. Xu, “Learning spectrum-invariance representation for cross-spectral palmprint recognition,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023.
  17. D. Zhong, H. Shao, and X. Du, “A hand-based multi-biometrics via deep hashing network and biometric graph matching,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3140–3150, 2019.
  18. D. Zhang, W.-K. Kong, J. You, and M. Wong, “Online palmprint identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 9, pp. 1041–1050, 2003.
  19. Z. Guo, D. Zhang, L. Zhang, and W. Zuo, “Palmprint verification using binary orientation co-occurrence vector,” Pattern Recognition Letters, vol. 30, no. 13, pp. 1219–1227, 2009.
  20. L. Zhang, H. Li, and J. Niu, “Fragile bits in palmprint recognition,” IEEE Signal Processing Letters, vol. 19, no. 10, pp. 663–666, 2012.
  21. A. Kong, D. Zhang, and M. Kamel, “Palmprint identification using feature-level fusion,” Pattern Recognition, vol. 39, no. 3, pp. 478–487, 2006.
  22. Z. Yang, L. Leng, and W. Min, “Extreme downsampling and joint feature for coding-based palmprint recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–12, 2021.
  23. L. Fei, B. Zhang, W. Jia, J. Wen, and D. Zhang, “Feature extraction for 3-d palmprint recognition: A survey,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 3, pp. 645–656, 2020.
  24. A.-K. Kong and D. Zhang, “Competitive coding scheme for palmprint verification,” in Proc. Int. Conf. Pattern Recognit. (ICPR), vol. 1, 2004, pp. 520–523.
  25. W. Jia, D.-S. Huang, and D. Zhang, “Palmprint verification based on robust line orientation code,” Pattern Recognition, vol. 41, no. 5, pp. 1504–1513, 2008.
  26. L. Fei, Y. Xu, W. Tang, and D. Zhang, “Double-orientation code and nonlinear matching scheme for palmprint recognition,” Pattern Recognition, vol. 49, pp. 89–101, 2016.
  27. Y. Xu, L. Fei, J. Wen, and D. Zhang, “Discriminative and robust competitive code for palmprint recognition,” IEEE Transactions on Systems Man Cybernetics: Systems, vol. 48, no. 2, pp. 232–241, 2018.
  28. H. Shao and D. Zhong, “Towards open-set touchless palmprint recognition via weight-based meta metric learning,” Pattern Recognition, vol. 121, p. 108247, 2022.
  29. S. Zhao and B. Zhang, “Joint constrained least-square regression with deep convolutional feature for palmprint recognition,” IEEE Transactions on Systems Man Cybernetics: Systems, vol. 52, no. 1, pp. 511–522, 2022.
  30. A. Genovese, V. Piuri, K. N. Plataniotis, and F. Scotti, “Palmnet: Gabor-pca convolutional networks for touchless palmprint recognition,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3160–3174, 2019.
  31. D. Zhong and J. Zhu, “Centralized large margin cosine loss for open-set deep palmprint recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1559–1568, 2019.
  32. D. Zhong, S. Liu, W. Wang, and X. Du, “Palm vein recognition with deep hashing network,” in Proc. Chinese Conf. Pattern Recognit. Comput. Vis. (PRCV), 2018, pp. 38–49.
  33. T. Wu, L. Leng, M. K. Khan, and F. A. Khan, “Palmprint-palmvein fusion recognition based on deep hashing network,” IEEE Access, vol. 9, pp. 135 816–135 827, 2021.
  34. W. Jia, Q. Ren, Y. Zhao, S. Li, H. Min, and Y. Chen, “Eepnet: An efficient and effective convolutional neural network for palmprint recognition,” Pattern Recognition Letters, vol. 159, pp. 140–149, 2022.
  35. X. Liang, D. Fan, J. Yang, W. Jia, G. Lu, and D. Zhang, “Pklnet: Keypoint localization neural network for touchless palmprint recognition based on edge-aware regression,” IEEE Journal of Selected Topics in Signal Processing, 2023.
  36. Z. Yang, W. Xia, Y. Qiao, Z. Lu, B. Zhang, L. Leng, and Y. Zhang, “Co3net: Coordinate-aware contrastive competitive neural network for palmprint recognition,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–14, 2023.
  37. X. Liang, J. Yang, G. Lu, and D. Zhang, “Compnet: Competitive neural network for palmprint recognition using learnable gabor kernels,” IEEE Signal Processing Letters, vol. 28, pp. 1739–1743, 2021.
  38. H. Shao, C. Liu, X. Li, and D. Zhong, “Privacy preserving palmprint recognition via federated metric learning,” IEEE Transactions on Information Forensics and Security, 2023.
  39. Z. Yang, A. B. J. Teoh, B. Zhang, L. Leng, and Y. Zhang, “Physics-driven spectrum-consistent federated learning for palmprint verification,” arXiv preprint arXiv:2308.00451, 2023.
  40. Z. Yang, L. Leng, A. B. J. Teoh, B. Zhang, and Y. Zhang, “Cross-database attack of different coding-based palmprint templates,” Knowledge-Based Systems, vol. 264, p. 110310, 2023.
  41. J. C. Bernal-Romero, J. M. Ramirez-Cortes, J. Rangel-Magdaleno, H. Peregrina-Barreto, I. Cruz-Vega et al., “A review on protection and cancelable techniques in biometric systems,” IEEE Access, 2023.
  42. Manisha and N. Kumar, “Cancelable biometrics: A comprehensive survey,” Artificial Intelligence Review, vol. 53, pp. 3403–3446, 2020.
  43. J. Qiu, H. Li, and C. Zhao, “Cancelable palmprint templates based on random measurement and noise data for security and privacy-preserving authentication,” Computers & Security, vol. 82, pp. 1–14, 2019.
  44. M. I. Ashiba, H. A. Youness, and H. I. Ashiba, “Proposed homomorphic dwt for cancelable palmprint recognition technique,” Multimedia Tools and Applications, pp. 1–24, 2023.
  45. J. Lee, B.-S. Oh, and K.-A. Toh, “Extraction of intersecting palm-vein and palmprint features for cancellable identity verification,” CAAI Transactions on Intelligence Technology, 2024.
  46. H. Li, J. Qiu, and A. B. J. Teoh, “Palmprint template protection scheme based on randomized cuckoo hashing and minhash,” Multimedia Tools and Applications, vol. 79, no. 17-18, pp. 11 947–11 971, 2020.
  47. A. T. B. Jin, D. N. C. Ling, and A. Goh, “Biohashing: two factor authentication featuring fingerprint data and tokenised random number,” Pattern Recognition, vol. 37, no. 11, pp. 2245–2255, 2004.
  48. V. Sujitha and D. Chitra, “A novel technique for multi biometric cryptosystem using fuzzy vault,” Journal of Medical Systems, vol. 43, no. 5, p. 112, 2019.
  49. Z. Jin, J. Y. Hwang, Y.-L. Lai, S. Kim, and A. B. J. Teoh, “Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 2, pp. 393–407, 2017.
  50. Y. K. Jang and N. I. Cho, “Deep face image retrieval for cancelable biometric authentication,” in 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).   IEEE, 2019, pp. 1–8.
  51. X. Dong, S. Cho, Y. Kim, S. Kim, and A. B. J. Teoh, “Deep rank hashing network for cancellable face identification,” Pattern Recognition, vol. 131, p. 108886, 2022.
  52. T. Wu, L. Leng, and M. K. Khan, “A multi-spectral palmprint fuzzy commitment based on deep hashing code with discriminative bit selection,” Artificial Intelligence Review, vol. 56, no. 7, pp. 6169–6186, 2023.
  53. H. O. Shahreza, V. K. Hahn, and S. Marcel, “Mlp-hash: Protecting face templates via hashing of randomized multi-layer perceptron,” in 2023 31st European Signal Processing Conference (EUSIPCO).   IEEE, 2023, pp. 605–609.
  54. D. Zhao, W. Luo, R. Liu, and L. Yue, “Negative iris recognition,” IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp. 112–125, 2015.
  55. R. Liu, W. Luo, and L. Yue, “The p-hidden algorithm: Hiding single databases more deeply,” Immune Computation, vol. 2, no. 1, pp. 43–55, 2014.
  56. P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learning,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33, 2020, pp. 18 661–18 673.
  57. F. Esponda, E. S. Ackley, P. Helman, H. Jia, and S. Forrest, “Protecting data privacy through hard-to-reverse negative databases,” International Journal of Information Security, vol. 6, pp. 403–415, 2007.
  58. F. Esponda, E. S. Ackley, S. Forrest, and P. Helman, “Online negative databases,” in International Conference on Artificial Immune Systems (ICAIS).   Springer, 2004, pp. 175–188.
  59. H. Jiang, Y. Liao, D. Zhao, Y. Li, K. Mu, and Q. Yu, “A negative survey based privacy preservation method for topology of social networks,” Applied Soft Computing, vol. 146, p. 110641, 2023.
  60. D. Zhang, Z. Guo, G. Lu, L. Zhang, and W. Zuo, “An online system of multispectral palmprint verification,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 2, pp. 480–490, 2009.
  61. A. Kumar and S. Shekhar, “Personal identification using multibiometrics rank-level fusion,” IEEE Transactions on Systems, Man, and Cybernetics: Part C, vol. 41, no. 5, pp. 743–752, 2010.
  62. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  63. M. Gomez-Barrero, J. Galbally, C. Rathgeb, and C. Busch, “General framework to evaluate unlinkability in biometric template protection systems,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 6, pp. 1406–1420, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.