Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving Multi-biometric Indexing based on Frequent Binary Patterns (2310.03091v1)

Published 4 Oct 2023 in cs.CV

Abstract: The development of large-scale identification systems that ensure the privacy protection of enrolled subjects represents a major challenge. Biometric deployments that provide interoperability and usability by including efficient multi-biometric solutions are a recent requirement. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes seem inadequate for indexing (workload reduction) in biometric identification systems. More specifically, they have been used in identification systems that perform exhaustive searches, leading to a degradation of computational efficiency. To overcome these limitations, we propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates and is agnostic with respect to biometric characteristics and biometric template protection schemes. To this end, a multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics. Experimental results reported on publicly available databases using state-of-the-art Deep Neural Network (DNN)-based embedding extractors show that the protected multi-biometric identification system can reduce the computational workload to approximately 57\% (indexing up to three types of biometric characteristics) and 53% (indexing up to two types of biometric characteristics), while simultaneously improving the biometric performance of the baseline biometric system at the high-security thresholds. The source code of the proposed multi-biometric indexing approach together with the composed multi-biometric dataset, will be made available to the research community once the article is accepted.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. L. Pascu, “Global biometrics market to surpass $45b by 2024, reports frost & sullivan,” https\://www.biometricupdate.com/202003/global-biometrics-market-to-surpass-45b-by-2024-reports-frost-sullivan, Mar.2020, last accessed: October 4, 2023.
  2. B. Beranek, “How banks and retailers fight a rising tide of fraud with multimodal biometrics,” https\://www.biometricupdate.com/202301/how-banks-and-retailers-fight-a-rising-tide-of-fraud-with-multimodal-biometrics, Jan.25.2023, last accessed: October 4, 2023.
  3. C. Burt, “Combined iris and face biometrics solution launched by thales for efficient border checks,” https\://www.biometricupdate.com/202212/combined-iris-and-face-biometrics-solution-launched-by-thales-for-efficient-border-checks, Dec.7.2022, last accessed: October 4, 2023.
  4. Unique Identification Authority of India, “Aadhaar dashboard,” https://www.uidai.gov.in/aadhaar\_dashboard/, 2018, last accessed: October 4, 2023.
  5. J. Nash, “Clear must re-enroll 48k members after it’s found they weren’t biometrically checked,” https\://www.biometricupdate.com/202301/clear-must-re-enroll-48k-members-after-its-found-they-werent-biometrically-checked, Jan.11.2023, last accessed: October 4, 2023.
  6. P. Drozdowski, C. Rathgeb, and C. Busch, “Computational workload in biometric identification systems: An overview,” IET Biometrics, vol. 8, no. 6, pp. 351–368, November 2019.
  7. F. Edwards, “How period tracker concerns have brought data privacy issues into the foreground,” https\://www.biometricupdate.com/202211/how-period-tracker-concerns-have-brought-data-privacy-issues-into-the-foreground, Nov.23.2022, last accessed: October 4, 2023.
  8. M. Gomez-Barrero, J. Galbally, C. Rathgeb, and C. Busch, “General framework to evaluate unlinkability in biometric template protection systems,” IEEE Trans. on Information Forensics and Security (TIFS), vol. 13, no. 6, pp. 1406–1420, June 2018.
  9. European Council, “Regulation of the european parliament and of the council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (general data protection regulation),” April 2016.
  10. C. Rathgeb and A. Uhl, “A survey on biometric cryptosystems and cancelable biometrics,” EURASIP Journal on Information Security, vol. 3, March 2011.
  11. V. Hahn and S. Marcel, “Biometric template protection for neural-network-based face recognition systems: A survey of methods and evaluation techniques,” IEEE Trans. on Information Forensics and Security (TIFS), vol. 18, pp. 639–666, 2022.
  12. A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in Proc. Intl. Conf. on Computer and Communications Security, 1999, pp. 28–36.
  13. A. Juels and M. Sudan, “A fuzzy vault scheme,” Designs, Codes and Cryptography, vol. 38, pp. 237–257, 2006.
  14. X. Dong, S. Kim, Z. Jin, J. Hwang, S. Cho, and A. Teoh, “Open-set face identification with index-of-max hashing by learning,” Pattern Recognition, vol. 103, p. 107277, 2020.
  15. D. Osorio-Roig, C. Rathgeb, H. Otroshi-Shahreza, C. Busch, and S. Marcel, “Indexing protected deep face templates by frequent binary patterns,” in Proc. of the 2022 Intl. Joint Conf. on Biometrics (IJCB), October 2022.
  16. A. Teoh, A. Goh, and D. Ngo, “Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs,” IEEE Trans. on pattern analysis and machine intelligence, vol. 28, no. 12, pp. 1892–1901, 2006.
  17. Z. Jin, J. Hwang, Y.-L. Lai, S. Kim, and A. Teoh, “Ranking-based locality sensitive hashing-enabled cancelable biometrics: Index-of-max hashing,” IEEE Trans. on Information Forensics and Security (TIFS), vol. 13, no. 2, pp. 393–407, 2017.
  18. P. Drozdowski, C. Rathgeb, B.-A. Mokroß, and C. Busch, “Multi-biometric identification with cascading database filtering,” Trans. on Biometrics, Behavior, and Identity Science (TBIOM), vol. 2, no. 3, pp. 210–222, July 2020.
  19. ISO/IEC JTC1 SC37 Biometrics, “Intl. standards ISO/IEC TR 24722, multimodal and other multibiometric fusion,” Intl. Organization for Standardisation, Tech. Rep., 2015.
  20. J. Merkle, T. Kevenaar, and U. Korte, “Multi-modal and multi-instance fusion for biometric cryptosystems,” in Proc. of the Intel. Conf. of Biometrics Special Interest Group (BIOSIG), 2012, pp. 1–6.
  21. P. Paul, M. Gavrilova, and R. Alhajj, “Decision fusion for multimodal biometrics using social network analysis,” IEEE Trans. On Systems, Man, and Cybernetics: Systems, vol. 44, no. 11, pp. 1522–1533, 2014.
  22. L. Dinca and G. Hancke, “The fall of one, the rise of many: a survey on multi-biometric fusion methods,” IEEE Access, vol. 5, pp. 6247–6289, 2017.
  23. M. Singh, R. Singh, and A. Ross, “A comprehensive overview of biometric fusion,” Information Fusion, vol. 52, pp. 187–205, 2019.
  24. J. Daugman, “Biometric decision landscapes,” University of Cambridge, Computer Laboratory, Tech. Rep., 2000.
  25. I. Kavati, M. Prasad, and C. Bhagvati, “Search space reduction in biometric databases: a review,” Computer Vision: Concepts, Methodologies, Tools, and Applications, pp. 1600–1626, 2018.
  26. P. Drozdowski, F. Struck, C. Rathgeb, and C. Busch, “Benchmarking binarisation schemes for deep face templates,” in Proc. Intl. Conf. on Image Processing (ICIP), October 2018, pp. 191–195.
  27. Y. Wang, J. Wan, J. Guo, Y.-M. Cheung, and P. Yuen, “Inference-based similarity search in randomized montgomery domains for privacy-preserving biometric identification,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 40, no. 7, pp. 1611–1624, 2017.
  28. T. Murakami, R. Fujita, T. Ohki, Y. Kaga, M. Fujio, and K. Takahashi, “Cancelable permutation-based indexing for secure and efficient biometric identification,” IEEE Access, vol. 7, pp. 45 563–45 582, 2019.
  29. P. Drozdowski, C. Rathgeb, and C. Busch, “Bloom filter-based search structures for indexing and retrieving iris-codes,” IET Biometrics, vol. 7, no. 3, pp. 260–268, August 2017.
  30. S. Choudhary and A. Naik, “Protected biometric identification with multiple finger vein,” in 2022 2nd Asian Conf. on Innovation in Technology (ASIANCON), 2022, pp. 1–6.
  31. A. Sardar, S. Umer, C. Pero, and M. Nappi, “A novel cancelable facehashing technique based on non-invertible transformation with encryption and decryption template,” IEEE Access, vol. 8, pp. 105 263–105 277, 2020.
  32. P. Drozdowski, N. Buchmann, C. Rathgeb, M. Margraf, and C. Busch, “On the application of homomorphic encryption to face identification,” in Proc. Intl. Conf. of the Biometrics Special Interest Group (BIOSIG), September 2019, pp. 1–8.
  33. J. Engelsma, A. Jain, and V. Boddeti, “Hers: Homomorphically encrypted representation search,” arXiv preprint arXiv:2003.12197, 2020.
  34. D. Osorio-Roig, C. Rathgeb, P. Drozdowski, and C. Busch, “Stable hash generation for efficient privacy-preserving face identification,” Trans. on Biometrics, Behavior, and Identity Science (TBIOM), vol. 4, no. 3, pp. 333–348, July 2021.
  35. P. Drozdowski, F. Stockhardt, C. Rathgeb, D. Osorio-Roig, and C. Busch, “Feature fusion methods for indexing and retrieval of biometric data: Application to face recognition with privacy protection,” IEEE Access, vol. 9, pp. 139 361–139 378, October 2021.
  36. J. Kolberg, P. Bauspieß, M. Gomez-Barrero, C. Rathgeb, M. Dürmuth, and C. Busch, “Template protection based on homomorphic encryption: Computationally efficient application to iris-biometric verification and identification,” in IEEE Workshop on Information Forensics and Security (WIFS), 2019, pp. 1–6.
  37. P. Bauspiess, J. Kolberg, P. Drozdowski, C. Rathgeb, and C. Busch, “Privacy-preserving preselection for protected biometric identification using public-key encryption with keyword search,” IEEE Trans. on Industrial Informatics, 2022.
  38. J. Engelsma, K. Cao, and A. Jain, “Learning a fixed-length fingerprint representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp. 1981–1997, 2019.
  39. X. Dong, S. Kim, Y. J. Z-H. Jin, S. Cho, and A.-B.-J. Teoh, “Secure chaff-less fuzzy vault for face identification systems,” ACM Trans. on Multimidia Computing Communications and Applications, vol. 17, no. 3, pp. 1–22, 2021.
  40. V. Patel, N. Ratha, and R. Chellappa, “Cancelable biometrics: A review,” IEEE signal processing magazine, vol. 32, no. 5, pp. 54–65, 2015.
  41. U. Uludag, S. Pankanti, S. Prabhakar, and A. Jain, “Biometric cryptosystems: issues and challenges,” Proc. of the IEEE, vol. 92, no. 6, pp. 948–960, 2004.
  42. C. Aguilar-Melchor, S. Fau, C. Fontaine, G. Gogniat, and R. Sirdey, “Recent advances in homomorphic encryption: A possible future for signal processing in the encrypted domain,” IEEE Signal Processing Magazine, vol. 30, no. 2, pp. 108–117, 2013.
  43. L. Sperling, N. Ratha, A. Ross, and V. Boddeti, “Heft: Homomorphically encrypted fusion of biometric templates,” in Proc. Intl. Joint Conf. on Biometrics (IJCB), 2022, pp. 1–10.
  44. P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of dimensionality,” in Proc. of the thirtieth Annual ACM Symposium on Theory of Computing, 1998, pp. 604–613.
  45. U. Jayaraman, S. Prakash, and P. Gupta, “Indexing multimodal biometric databases using kd-tree with feature level fusion,” in Proc. Intl. Conf. Information Systems Security, 2008, pp. 221–234.
  46. A. Gyaourova and A. Ross, “A coding scheme for indexing multimodal biometric databases,” in Proc. Intl. Conf. on Computer Vision and Pattern Recognition Workshops, 2009, pp. 93–98.
  47. A. Jain, B. Klare, and A. Ross, “Guidelines for best practices in biometrics research,” in 2015 Intl. Conf. on Biometrics (ICB), 2015, pp. 541–545.
  48. P. Bauspieß, M. Grimmer, C. Fougner, D. L. Vasseur, T. T.Stöcklin, C. Rathgeb, J. Kolberg, A. Costache, and C. Busch, “HEBI: Homomorphically encrypted biometric indexing,” in Proc. Intl. Joint Conf. on Biometrics (IJCB), October 2023.
  49. G. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Faces in the wild: a database for studying face recognition in unconstrained environments,” Technical Report, pp. 07–49, 2007.
  50. J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. G. M., Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho et al., “Mcyt baseline corpus: a bimodal biometric database,” IEEE Proc. Image and Signal Processing, vol. 150, no. 6, pp. 395–401, 2003.
  51. “Chinese academy of sciences institute of automation. casia iris image database,” 2004. [Online]. Available: https://www.kaggle.com/datasets/achampetasonali/casia-iris-thousand,http://biometrics.idealtest.org
  52. J. Ortega-Garcia, J. Fierrez, F. Alonso-Fernandez, J. Galbally, M. Freire, J. Gonzalez-Rodriguez, C. Garcia-Mateo, J.-L. Alba-Castro, E. Gonzalez-Agulla, E. Otero-Muras et al., “The multiscenario multienvironment biosecure multimodal database (bmdb),” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, no. 6, pp. 1097–1111, 2009.
  53. F. Boutros, M. Fang, M. Klemt, B. Fu, and N. Damer, “Cr-fiqa: face image quality assessment by learning sample relative classifiability,” in Proc. Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 5836–5845.
  54. NIST, “Nfiq2.0: Nist fingerprint image quality 2.0,” https://github.com/usnistgov/NFIQ2/, 2021, last accessed: October 4, 2023.
  55. F. Boutros, N. Damer, F. Kirchbuchner, and A. Kuijper, “Elasticface: Elastic margin loss for deep face recognition,” in Proc. Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 1578–1587.
  56. T. Rohwedder, D. Osorio-Roig, C. Rathgeb, and C. Busch, “Benchmarking fixed-length fingerprint representations across different embedding sizes and sensor types,” in Proc. Intl. Conf. of the Biometrics Special Interest Group (BIOSIG).   Gesellschaft für Informatik e.V., September 2023.
  57. F. Boutros, O. Kaehm, M. Fang, F. Kirchbuchner, N. Damer, and A. Kuijper, “Low-resolution iris recognition via knowledge transfer,” in Proc. Intl. Conf. of the Biometrics Special Interest Group (BIOSIG), 2022, pp. 1–5.
  58. I. Duta, L. Liu, F. Zhu, and L. Shao, “Improved residual networks for image and video recognition,” in Proc. Intl. Conf. on Pattern Recognition (ICPR), 2021, pp. 9415–9422.
  59. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in Proc. Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4690–4699.
  60. G. Sutra, S. Garcia-Salicetti, and B. Dorizzi, “The viterbi algorithm at different resolutions for enhanced iris segmentation,” in Proc. Intl. Conf. on Biometrics (ICB), 2012, pp. 310–316.
  61. N. Othman, B. Dorizzi, and S. Garcia-Salicetti, “Osiris: An open source iris recognition software,” Pattern Recognition Letters, vol. 82, pp. 124–131, 2016.
  62. J. Daugman, “How iris recognition works,” in The essential guide to image processing, 2009, pp. 715–739.
  63. K. Zuiderveld, “Contrast limited adaptive histogram equalization,” Graphics gems, pp. 474–485, 1994.
  64. A. Jin, D. Ling, and A. Goh, “Biohashing: two factor authentication featuring fingerprint data and tokenised random number,” Pattern recognition, vol. 37, no. 11, pp. 2245–2255, 2004.
Citations (4)

Summary

We haven't generated a summary for this paper yet.