Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Percolation of nonequilibrium assemblies of colloidal particles in active chiral liquids (2403.02423v1)

Published 4 Mar 2024 in cond-mat.soft

Abstract: The growing interest in the non-equilibrium assembly of colloidal particles in active liquids is driven by the motivation to create novel structures endowed with tunable properties unattainable within the confines of equilibrium systems. Here, we present an experimental investigation of the structural features of colloidal assemblies in active liquids of chiral E. coli. The colloidal particles form dynamic clusters due to the effective interaction mediated by active media. The activity and chirality of the swimmers strongly influence the dynamics and local ordering of colloidal particles, resulting in clusters with persistent rotation, whose structure differs significantly from those in equilibrium systems with attractive interactions, such as colloid-polymer mixtures. The colloid-bacteria mixture displays several haLLMark features of a percolation transition at a critical density, where the clusters span the system size. However, a closer examination of the critical exponents associated with cluster size distribution, average cluster size, and correlation length in the vicinity of the critical density suggest strong deviations from the prediction of the standard continuum percolation model. Therefore, our experiments reveal a richer phase behavior of colloidal assemblies in active liquids.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Köhler, V. Schaller, and A. R. Bausch, Structure formation in active networks, Nature materials 10, 462 (2011).
  2. X.-L. Wu and A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath, Physical review letters 84, 3017 (2000).
  3. A. Morozov and D. Marenduzzo, Enhanced diffusion of tracer particles in dilute bacterial suspensions, Soft Matter 10, 2748 (2014).
  4. M. Zaeifi Yamchi and A. Naji, Effective interactions between inclusions in an active bath, The Journal of chemical physics 147 (2017).
  5. F. Feng, T. Lei, and N. Zhao, Tunable depletion force in active and crowded environments, Physical Review E 103, 022604 (2021).
  6. J. Bouvard, F. Moisy, and H. Auradou, Ostwald-like ripening in the two-dimensional clustering of passive particles induced by swimming bacteria, Physical Review E 107, 044607 (2023).
  7. P. Dolai, A. Simha, and S. Mishra, Phase separation in binary mixtures of active and passive particles, Soft Matter 14, 6137 (2018).
  8. W. C. Poon, The physics of a model colloid–polymer mixture, Journal of Physics: Condensed Matter 14, R859 (2002).
  9. E. Zaccarelli, Colloidal gels: Equilibrium and non-equilibrium routes, Journal of Physics: Condensed Matter 19, 323101 (2007).
  10. H. Tsurusawa, S. Arai, and H. Tanaka, A unique route of colloidal phase separation yields stress-free gels, Science Advances 6, eabb8107 (2020).
  11. F. J. Schwarzendahl and M. G. Mazza, Active percolation in pusher-type microswimmers, Europhysics Letters 140, 47001 (2022).
  12. M. Sanoria, R. Chelakkot, and A. Nandi, Percolation transition in phase-separating active fluid, Physical Review E 106, 034605 (2022).
  13. D. Levis and L. Berthier, Clustering and heterogeneous dynamics in a kinetic monte carlo model of self-propelled hard disks, Phys. Rev. E 89, 062301 (2014).
  14. D. Stauffer and A. Aharony, Introduction to percolation theory (CRC press, 2018).
  15. E. T. Gawlinski and H. E. Stanley, Continuum percolation in two dimensions: Monte carlo tests of scaling and universality for non-interacting discs, Journal of Physics A: Mathematical and General 14, L291 (1981).
  16. S. Safran, I. Webman, and G. S. Grest, Percolation in interacting colloids, Physical Review A 32, 506 (1985).
  17. D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces, Physics of Fluids 26 (2014).
  18. R. M. Ziff, Spanning probability in 2d percolation, Physical review letters 69, 2670 (1992).
  19. S. B. Lee and S. Torquato, Monte carlo study of correlated continuum percolation: Universality and percolation thresholds, Physical Review A 41, 5338 (1990).
  20. K. Christensen, Percolation theory, Imperial College London 1 (2002).
  21. B. Lorenz, I. Orgzall, and H.-O. Heuer, Universality and cluster structures in continuum models of percolation with two different radius distributions, Journal of Physics A: Mathematical and General 26, 4711 (1993).
  22. H. Tanaka, Viscoelastic phase separation in biological cells, Communications Physics 5, 167 (2022).
  23. R. Hunter, Foundations of Colloid Science (Oxford University Press, 2001).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com