Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Signatures of ultralight bosons in the orbital eccentricity of binary black holes (2403.02415v2)

Published 4 Mar 2024 in gr-qc, astro-ph.CO, astro-ph.HE, hep-ph, and hep-th

Abstract: We show that the existence of clouds of ultralight particles surrounding black holes during their cosmological history as members of a binary system can leave a measurable imprint on the distribution of masses and orbital eccentricities observable with future gravitational-wave detectors. Notably, we find that for nonprecessing binaries with chirp masses ${\cal M} \lesssim 10\,M_\odot$, formed exclusively in isolation, larger-than-expected values of the eccentricity, i.e. $e\gtrsim 10{-2}$ at gravitational-wave frequencies $f_{\rm GW} \simeq 10{-2}\,$Hz, would provide tantalizing evidence for a new particle of mass between $[0.5,2.5] \times 10{-12}\,$eV in nature. The predicted evolution of the eccentricity can also drastically affect the in-band phase evolution and peak frequency. These results constitute unique signatures of boson clouds of ultralight particles in the dynamics of binary black holes, which will be readily accessible with the Laser Interferometer Space Antenna, as well as future mid-band and Deci-hertz detectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. R. Alves Batista et al., EuCAPT White Paper: Opportunities and Challenges for Theoretical Astroparticle Physics in the Next Decade,   (2021), arXiv:2110.10074 [astro-ph.HE] .
  2. K. G. Arun et al. (LISA), New horizons for fundamental physics with LISA, Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
  3. M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
  4. D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
  5. S. Baum, Z. Bogorad, and P. W. Graham, Gravitational Wave Science in the Mid-Band with Atom Interferometers,   (2023), arXiv:2309.07952 [gr-qc] .
  6. S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP 2021, 05A105 (2021), arXiv:2006.13545 [gr-qc] .
  7. A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  8. D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
  9. L. Randall and Z.-Z. Xianyu, Eccentricity without Measuring Eccentricity: Discriminating among Stellar Mass Black Hole Binary Formation Channels, Astrophys. J. 914, 75 (2021), arXiv:1907.02283 [astro-ph.HE] .
  10. X. Fang, T. A. Thompson, and C. M. Hirata, The Population of Eccentric Binary Black Holes: Implications for mHz Gravitational Wave Experiments, Astrophys. J. 875, 75 (2019), arXiv:1901.05092 [astro-ph.HE] .
  11. M. A. Sedda, Dissecting the properties of neutron star - black hole mergers originating in dense star clusters, Commun. Phys. 3, 43 (2020), arXiv:2003.02279 [astro-ph.GA] .
  12. H. Glanz and H. B. Perets, Common envelope evolution of eccentric binaries, Monthly Notices of the Royal Astronomical Society 507, 2659 (2021), arXiv:2105.02227 [astro-ph.SR] .
  13. P. Saini, Resolving the eccentricity of stellar mass binary black holes with next generation ground-based gravitational wave detectors 10.1093/mnras/stae037 (2023), arXiv:2308.07565 [astro-ph.HE] .
  14. R. Dhurkunde and A. H. Nitz, Search for eccentric NSBH and BNS mergers in the third observing run of Advanced LIGO and Virgo,   (2023), arXiv:2311.00242 [astro-ph.HE] .
  15. Y. B. Zel’Dovich, Generation of Waves by a Rotating Body, Soviet Journal of Experimental and Theoretical Physics Letters 14, 180 (1971).
  16. Y. B. Zel’Dovich, Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body, Soviet Journal of Experimental and Theoretical Physics 35, 1085 (1972).
  17. W. H. Press and S. A. Teukolsky, Floating Orbits, Superradiant Scattering and the Black-hole Bomb, Nature 238, 211 (1972).
  18. R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906, pp.1 (2015a), arXiv:1501.06570 [gr-qc] .
  19. D. Baumann, H. S. Chia, and R. A. Porto, Probing Ultralight Bosons with Binary Black Holes, Phys. Rev. D 99, 044001 (2019a), arXiv:1804.03208 [gr-qc] .
  20. G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Dynamical friction in gravitational atoms, JCAP 07, 070, arXiv:2305.15460 [gr-qc] .
  21. P. C. Peters and J. Mathews, Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev. 131, 435 (1963).
  22. P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
  23. M. Boskovic, M. Koschnitzke, and R. A. Porto, In preparation,  .
  24. S. L. Detweiler, KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES, Phys. Rev. D 22, 2323 (1980).
  25. W. E. East, Superradiant instability of massive vector fields around spinning black holes in the relativistic regime, Phys. Rev. D 96, 024004 (2017), arXiv:1705.01544 [gr-qc] .
  26. S. R. Dolan, Instability of the massive Klein-Gordon field on the Kerr spacetime, Phys. Rev. D 76, 084001 (2007), arXiv:0705.2880 [gr-qc] .
  27. H. Yoshino and H. Kodama, Gravitational radiation from an axion cloud around a black hole: Superradiant phase, PTEP 2014, 043E02 (2014), arXiv:1312.2326 [gr-qc] .
  28. R. Brito, V. Cardoso, and P. Pani, Black holes as particle detectors: evolution of superradiant instabilities, Class. Quant. Grav. 32, 134001 (2015b), arXiv:1411.0686 [gr-qc] .
  29. A. Arvanitaki, M. Baryakhtar, and X. Huang, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D 91, 084011 (2015), arXiv:1411.2263 [hep-ph] .
  30. N. Siemonsen, T. May, and W. E. East, Modeling the black hole superradiance gravitational waveform, Phys. Rev. D 107, 104003 (2023), arXiv:2211.03845 [gr-qc] .
  31. S. Tremaine, Dynamics of Planetary Systems (2023).
  32. L. Landau, Zur theorie der energieubertragung. ii (1932).
  33. C. Zener, Nonadiabatic crossing of energy levels, Proc. Roy. Soc. Lond. A 137, 696 (1932).
  34. V. M. Akulin and W. P. Schleich, Landau-zener transition to a decaying level, Phys. Rev. A 46, 4110 (1992).
  35. R. Brito and S. Shah, Extreme mass-ratio inspirals into black holes surrounded by scalar clouds, Phys. Rev. D 108, 084019 (2023), arXiv:2307.16093 [gr-qc] .
  36. N. V. Vitanov and S. Stenholm, Pulsed excitation of a transition to a decaying level, Phys. Rev. A 55, 2982 (1997).
  37. T. Takahashi, H. Omiya, and T. Tanaka, Evolution of binary systems accompanying axion clouds in extreme mass ratio inspirals, Phys. Rev. D 107, 103020 (2023), arXiv:2301.13213 [gr-qc] .
  38. T. Takahashi, H. Omiya, and T. Tanaka, Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation, PTEP 2022, 043E01 (2022), arXiv:2112.05774 [gr-qc] .
  39. G. Ficarra, P. Pani, and H. Witek, Impact of multiple modes on the black-hole superradiant instability, Phys. Rev. D 99, 104019 (2019), arXiv:1812.02758 [gr-qc] .
  40. N. V. Vitanov, Transition times in the Landau-Zener model, Phys. Rev. A 59, 988 (1999), arXiv:quant-ph/9811066 .
  41. L. Wen, On the eccentricity distribution of coalescing black hole binaries driven by the Kozai mechanism in globular clusters, Astrophys. J. 598, 419 (2003), arXiv:astro-ph/0211492 .
  42. B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  43. L. Randall and Z.-Z. Xianyu, An Analytical Portrait of Binary Mergers in Hierarchical Triple Systems, Astrophys. J. 864, 134 (2018), arXiv:1802.05718 [gr-qc] .
  44. L. Randall and Z.-Z. Xianyu, Observing Eccentricity Oscillations of Binary Black Holes in LISA,   (2019), arXiv:1902.08604 [astro-ph.HE] .
  45. G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, To appear,  .
  46. H. Yoshino and H. Kodama, The bosenova and axiverse, Class. Quant. Grav. 32, 214001 (2015), arXiv:1505.00714 [gr-qc] .
  47. A. Gruzinov, Black Hole Spindown by Light Bosons,   (2016), arXiv:1604.06422 [astro-ph.HE] .
  48. J. a. G. Rosa and T. W. Kephart, Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes, Phys. Rev. Lett. 120, 231102 (2018), arXiv:1709.06581 [gr-qc] .
  49. H. Fukuda and K. Nakayama, Aspects of Nonlinear Effect on Black Hole Superradiance, JHEP 01, 128, arXiv:1910.06308 [hep-ph] .
  50. Y. Chen, X. Xue, and V. Cardoso, Black Holes as Neutrino Factories,   (2023), arXiv:2308.00741 [hep-ph] .
  51. S. L. Detweiler and E. Poisson, Low multipole contributions to the gravitational selfforce, Phys. Rev. D 69, 084019 (2004), arXiv:gr-qc/0312010 .
  52. Y. Cao and Y. Tang, Signatures of ultralight bosons in compact binary inspiral and outspiral, Phys. Rev. D 108, 123017 (2023), arXiv:2307.05181 [gr-qc] .
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.