Empirical learning of dynamical decoupling on quantum processors (2403.02294v2)
Abstract: Dynamical decoupling (DD) is a low-overhead method for quantum error suppression. Despite extensive work in DD design, finding pulse sequences that optimally decouple computational qubits on noisy quantum hardware is not well understood. In this work, we describe how learning algorithms can empirically tailor DD strategies for any quantum circuit and device. We use a genetic algorithm-inspired search to optimize DD (GADD) strategies for IBM's superconducting-qubit based quantum processors. In all observed experimental settings, we find that empirically learned DD strategies significantly improve error suppression relative to canonical sequences, with relative improvement increasing with problem size and circuit sophistication. We leverage this to study mirror randomized benchmarking on 100 qubits, GHZ state preparation on 50 qubits, and the Bernstein-Vazirani algorithm on 27 qubits. We further demonstrate that our empirical learning method finds strategies, in time constant with increasing circuit width and depth, that provide stable performance over long periods of time without retraining and generalize to larger circuits when trained on small sub-circuit structures.
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Physical Review Letters 82, 2417 (1999).
- L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
- D. Vitali and P. Tombesi, Using parity kicks for decoherence control, Physical Review A 59, 4178 (1999).
- P. Zanardi, Symmetrizing evolutions, Physics Letters A 258, 77 (1999).
- D. Riste, V. Dobrovitski, and R. Hanson, Universal dynamical decoupling of a single solid-state spin from a spin bath, Science 330, 60 (2010).
- P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
- A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 (1996).
- P. Shor, Fault-tolerant quantum computation, in Proceedings of 37th Conference on Foundations of Computer Science (1996) pp. 56–65.
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- G. Q. AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- H. K. Ng, D. A. Lidar, and J. Preskill, Combining dynamical decoupling with fault-tolerant quantum computation, Phys. Rev. A 84, 012305 (2011).
- L. Viola and E. Knill, Robust dynamical decoupling of quantum systems with bounded controls, Phys. Rev. Lett. 90, 037901 (2009).
- B. Pokharel and D. Lidar, Better-than-classical grover search via quantum error detection and suppression (2022), arXiv:2211.04543 .
- B. Pokharel and D. A. Lidar, Demonstration of algorithmic quantum speedup, Phys. Rev. Lett. 130, 210602 (2023).
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Physical Review Letters 119, 180509 (2017).
- E. Van Den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Physical Review A 105, 032620 (2022).
- A. Zlokapa and A. Gheorghiu, A deep learning model for noise prediction on near-term quantum devices (2020), arXiv:2005.10811 .
- H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
- S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Review of scientific instruments 29, 688 (1958).
- G. Quiroz and D. A. Lidar, Optimized dynamical decoupling via genetic algorithms, Physical Review A 88, 052306 (2013).
- L. Wu and D. A. Lidar, Creating decoherence-free subspaces using strong and fast pulses, Phys. Rev. Lett. 88, 207902 (2002).
- E. Polak, Optimization: algorithms and consistent approximations, Vol. 124 (Springer Science & Business Media, 2012).
- C. Reeves and J. E. Rowe, Genetic algorithms: principles and perspectives: a guide to GA theory, Vol. 20 (Springer Science & Business Media, 2002).
- M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1999).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys. Rev. A 70, 052328 (2004).
- E. Bernstein and U. Vazirani, Quantum complexity theory, in Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (1993) pp. 11–20.
- The Qiskit Research developers and contributors, Qiskit Research (2023).
- D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
- L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997).
- E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized benchmarking of quantum processes, Physical review letters 106, 180504 (2011).
- E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Physical Review A 85, 042311 (2012).
- Qiskit Contributors, Qiskit: An Open-source Framework for Quantum Computing (2023).
- B. Johnson, Qiskit runtime, a quantum-classical execution platform for cloud-accessible quantum computers, in APS March Meeting Abstracts, Vol. 2022 (2022) pp. T28–002.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.