Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Optimizing the Energetics of the Finite-time Driving of Field Theories (2403.02216v1)

Published 4 Mar 2024 in cond-mat.stat-mech and physics.bio-ph

Abstract: The phase transitions for many-body systems have been understood using field theories. A few canonical physical model classes encapsulate the underlying physical properties of a large number of systems. The finite-time driving of such systems and associated optimal energetic costs have not been investigated yet. We consider two universality classes Model A and Model B, that describe the dynamics for the non-conserved and conserved scalar order parameters respectively. Here, using the recent developments in stochastic thermodynamics and optimal transport theory, we analytically compute the optimal driving protocols by minimizing the mean stochastic work required for finite-time driving. Further, we numerically optimize the mean and variance of the stochastic work simultaneously. Such a multi-objective optimization is called a Pareto optimization problem and its optimal solution is a Pareto front. We discover a first-order Pareto phase transition in the Pareto front. Physically, it corresponds to the coexistence of two classes of optimal driving protocols analogous to the liquid-gas coexistence for the equilibrium phase transition. Our framework sheds light on the finite-time optimal driving of the fields and the trade-off between the mean and fluctuations of the optimal work.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. G. E. Crooks, Phys. Rev. Lett. 99, 100602 (2007).
  2. E. H. Feng and G. E. Crooks, Phys. Rev. Lett. 101, 090602 (2008).
  3. B. B. Machta, Phys. Rev. Lett. 115, 260603 (2015).
  4. S. Ito, Phys. Rev. Lett. 121, 030605 (2018).
  5. K. Brandner and K. Saito, Phys. Rev. Lett. 124, 040602 (2020).
  6. T. Van Vu and Y. Hasegawa, Phys. Rev. Lett. 126, 010601 (2021).
  7. S. Ito and A. Dechant, Phys. Rev. X 10, 021056 (2020).
  8. K. Yoshimura and S. Ito, Phys. Rev. Research 3, 013175 (2021).
  9. M. Nakazato and S. Ito, Geometrical aspects of entropy production in stochastic thermodynamics based on wasserstein distance (2021), arXiv:2103.00503 [cond-mat.stat-mech] .
  10. D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602 (2012).
  11. D. A. Sivak and G. E. Crooks, Phys. Rev. E 94, 052106 (2016).
  12. P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 89, 052140 (2014).
  13. P. R. Zulkowski and M. R. DeWeese, Phys. Rev. E 92, 032113 (2015).
  14. G. M. Rotskoff, G. E. Crooks, and E. Vanden-Eijnden, Phys. Rev. E 95, 012148 (2017).
  15. P. R. Zulkowski, D. A. Sivak, and M. R. DeWeese, PLOS ONE 8, 1 (2013).
  16. M. V. S. Bonança and S. Deffner, The Journal of Chemical Physics 140, 244119 (2014), https://doi.org/10.1063/1.4885277 .
  17. S. Deffner, Journal of Physics B: Atomic, Molecular and Optical Physics 47, 145502 (2014).
  18. S. J. Large and D. A. Sivak, Journal of Statistical Mechanics: Theory and Experiment 2019, 083212 (2019).
  19. S. Deffner and M. V. S. Bonança, EPL (Europhysics Letters) 131, 20001 (2020).
  20. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
  21. A. J. Bray, Advances in Physics 51, 481 (2002), https://doi.org/10.1080/00018730110117433 .
  22. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 1995) p. 202.
  23. M. E. Cates, Complex fluids: The physics of emulsions (2012), arXiv:1209.2290 [cond-mat.soft] .
  24. K. Kawasaki, Physica A: Statistical Mechanics and its Applications 208, 35 (1994).
  25. D. S. Dean, Journal of Physics A: Mathematical and General 29, L613 (1996).
  26. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
  27. U. Seifert, Reports on Progress in Physics 75, 126001 (2012).
  28. C. Van den Broeck and M. Esposito, Physica A: Statistical Mechanics and its Applications 418, 6 (2015), proceedings of the 13th International Summer School on Fundamental Problems in Statistical Physics.
  29. K. Sekimoto, Stochastic Energetics (Courier Corporation, 2010).
  30. B. Andresen, Angewandte Chemie International Edition 50, 2690 (2011).
  31. M. Esposito and C. V. den Broeck, EPL (Europhysics Letters) 95, 40004 (2011).
  32. C. Villani, Topics in Optimal Transportation (American Mathematical Society) (American Mathematical Society, Providence, 2003).
  33. J.-D. Benamou and Y. Brenier, Numerische Mathematik 84, 375 (2000).
  34. F. Santambrogio, Optimal Transport for Applied Mathematicians(Progress in Nonlinear Differential Equations and Their Applications Volume 87) (Springer, 2015).
  35. E. Aurell, C. Mejía-Monasterio, and P. Muratore-Ginanneschi, Physical review letters 106, 250601 (2011).
  36. E. Aurell, C. Mejía-Monasterio, and P. Muratore-Ginanneschi, Phys. Rev. E 85, 020103 (2012a).
  37. A. Dechant and Y. Sakurai, Thermodynamic interpretation of wasserstein distance (2019), arXiv:1912.08405 [cond-mat.stat-mech] .
  38. T. Schmiedl and U. Seifert, Phys. Rev. Lett. 98, 108301 (2007).
  39. A. Gomez-Marin, T. Schmiedl, and U. Seifert, The Journal of Chemical Physics 129, 024114 (2008), https://doi.org/10.1063/1.2948948 .
  40. Y. Zhang, EPL (Europhysics Letters) 128, 30002 (2020a).
  41. Y. Zhang, Journal of Statistical Physics 178, 1336 (2020b).
  42. K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. Lett. 125, 100602 (2020a).
  43. K. Proesmans, J. Ehrich, and J. Bechhoefer, Phys. Rev. E 102, 032105 (2020b).
  44. K. Proesmans and J. Bechhoefer, EPL (Europhysics Letters) 133, 30002 (2021).
  45. Y. Chen, T. T. Georgiou, and A. Tannenbaum, IEEE Transactions on Automatic Control 65, 2979 (2020).
  46. A. P. Solon and J. M. Horowitz, Phys. Rev. Lett. 120, 180605 (2018).
  47. L. F. Seoane and R. Solé, Phys. Rev. E 92, 032807 (2015).
  48. L. F. Seoane and R. V. Solé, A multiobjective optimization approach to statistical mechanics (2015), arXiv:1310.6372 [cond-mat.stat-mech] .
  49. Supplemental information (2024).
  50. K. Miettinen, Nonlinear Multiobjective Optimization (Springer, 2009).
  51. E. Noor and R. Milo, Science 336, 1114 (2012), https://www.science.org/doi/pdf/10.1126/science.1223193 .
  52. H. Ronellenfitsch and E. Katifori, Phys. Rev. Lett. 123, 248101 (2019).
  53. H. Ronellenfitsch and E. Katifori, Phys. Rev. Lett. 117, 138301 (2016).
  54. L. Dinis, J. Unterberger, and D. Lacoste, Europhysics Letters 131, 60005 (2020).
  55. O. Mazonka and C. Jarzynski, Exactly solvable model illustrating far-from-equilibrium predictions (1999), arXiv:9912121 [nlin.PS] .
  56. T. Speck and U. Seifert, Phys. Rev. E 70, 066112 (2004).
  57. T. Speck, Journal of Physics A: Mathematical and Theoretical 44, 305001 (2011).
  58. H. J. D. Miller and M. Mehboudi, Phys. Rev. Lett. 125, 260602 (2020).
  59. The linear (Gaussian) driving dynamics of each Fourier mode are decoupled and hence evolve independently and justify this decomposition.
  60. A. Dechant and S.-i. Sasa, Phys. Rev. X 11, 041061 (2021).
  61. S. Dago and L. Bellon, Phys. Rev. Lett. 128, 070604 (2022).
  62. A. G. Frim and M. R. DeWeese, Phys. Rev. E 105, L052103 (2022a).
  63. A. G. Frim and M. R. DeWeese, Phys. Rev. Lett. 128, 230601 (2022b).
  64. Our framework can be seen as one stroke of the traditional four-stroke engine. It is unclear how one can optimize the efficiency over a cycle which is expected to have more sophisticated optimal driving protocols.
  65. C. W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, 2009).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com