A Safe Screening Rule with Bi-level Optimization of $ν$ Support Vector Machine (2403.01769v1)
Abstract: Support vector machine (SVM) has achieved many successes in machine learning, especially for a small sample problem. As a famous extension of the traditional SVM, the $\nu$ support vector machine ($\nu$-SVM) has shown outstanding performance due to its great model interpretability. However, it still faces challenges in training overhead for large-scale problems. To address this issue, we propose a safe screening rule with bi-level optimization for $\nu$-SVM (SRBO-$\nu$-SVM) which can screen out inactive samples before training and reduce the computational cost without sacrificing the prediction accuracy. Our SRBO-$\nu$-SVM is strictly deduced by integrating the Karush-Kuhn-Tucker (KKT) conditions, the variational inequalities of convex problems and the $\nu$-property. Furthermore, we develop an efficient dual coordinate descent method (DCDM) to further improve computational speed. Finally, a unified framework for SRBO is proposed to accelerate many SVM-type models, and it is successfully applied to one-class SVM. Experimental results on 6 artificial data sets and 30 benchmark data sets have verified the effectiveness and safety of our proposed methods in supervised and unsupervised tasks.
- doi:10.1162/089976600300015565.
- doi:10.1016/j.neunet.2009.08.001.
- doi:10.1162/089976601750264965.
- doi:10.1016/j.neucom.2014.05.035.
- arXiv:1802.06360.
- doi:10.1023/B:MACH.0000008084.60811.49.
- doi:10.1162/089976601750399335.
- doi:10.1109/tpami.2003.1233901.
- doi:10.1145/1961189.1961199.
- doi:10.1145/1390156.1390208.
- doi:10.1109/ICNNSP.2003.1279203.
- arXiv:1211.3966.
- arXiv:1307.4145.
- doi:10.1109/ICASSP39728.2021.9414183.
- doi:10.1016/j.knosys.2019.105223.
- doi:10.1016/j.knosys.2018.02.010.
- doi:https://doi.org/10.1016/j.patcog.2018.06.018.
- doi:10.1016/j.patcog.2021.107860.
- doi:10.1109/TNN.2011.2130540.
- doi:10.1007/s10489-013-0500-2.
- doi:10.1007/978-0-387-68407-9.
- M. Lichman, UCI machine learning repository (2013).