Directional emission of a readout resonator for qubit measurement (2403.01375v3)
Abstract: We propose and demonstrate transmission-based dispersive readout of a superconducting qubit using an all-pass resonator, which preferentially emits readout photons toward the output. This is in contrast to typical readout schemes, which intentionally mismatch the feedline at one end so that the readout signal preferentially decays toward the output. We show that this intentional mismatch creates scaling challenges, including larger spread of effective resonator linewidths due to non-ideal impedance environments and added infrastructure for impedance matching. A future architecture using multiplexed all-pass readout resonators would avoid the need for intentional mismatch and potentially improve the scaling prospects of quantum computers. As a proof-of-concept demonstration of "all-pass readout," we design and fabricate an all-pass readout resonator that demonstrates insertion loss below 1.17 dB at the readout frequency and a maximum insertion loss of 1.53 dB across its full bandwidth for the lowest three states of a transmon qubit. We demonstrate qubit readout with an average single-shot fidelity of 98.1% in 600 ns; to assess the effect of larger dispersive shift, we implement a shelving protocol and achieve a fidelity of 99.0% in 300 ns.
- E. A. Sete, J. M. Martinis, and A. N. Korotkov, Quantum theory of a bandpass Purcell filter for qubit readout, Physical Review A 92, 012325 (2015).
- Google Quantum AI, Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
- Google Quantum AI, Exponential suppression of bit or phase errors with cyclic error correction, Nature 595, 383 (2021).
- L. Ranzani and J. Aumentado, Circulators at the Quantum Limit: Recent Realizations of Quantum-Limited Superconducting Circulators and Related Approaches, IEEE Microwave Magazine 20, 112 (2019).
- N. Gheeraert, S. Kono, and Y. Nakamura, Programmable directional emitter and receiver of itinerant microwave photons in a waveguide, Physical Review A 102, 053720 (2020).
- A. F. Kockum, G. Johansson, and F. Nori, Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics, Physical Review Letters 120, 140404 (2018).
- C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Physical Review A 31, 3761 (1985).
- H. A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall Series in Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
- D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, Hoboken, NJ, 2012).
- A. Kamal, J. Clarke, and M. H. Devoret, Noiseless non-reciprocity in a parametric active device, Nature Physics 7, 311 (2011).
- B. J. Chapman, E. I. Rosenthal, and K. W. Lehnert, Design of an On-Chip Superconducting Microwave Circulator with Octave Bandwidth, Physical Review Applied 11, 044048 (2019).
- K. P. O’Brien, JosephsonCircuits.jl (2024).
- D. Esteve, M. H. Devoret, and J. M. Martinis, Effect of an arbitrary dissipative circuit on the quantum energy levels and tunneling of a Josephson junction, Physical Review B 34, 158 (1986).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.