Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Photonic Physically Unclonable Function's Resilience to Multiple-Valued Machine Learning Attacks (2403.01299v1)

Published 2 Mar 2024 in cs.CR and cs.LG

Abstract: Physically unclonable functions (PUFs) identify integrated circuits using nonlinearly-related challenge-response pairs (CRPs). Ideally, the relationship between challenges and corresponding responses is unpredictable, even if a subset of CRPs is known. Previous work developed a photonic PUF offering improved security compared to non-optical counterparts. Here, we investigate this PUF's susceptibility to Multiple-Valued-Logic-based machine learning attacks. We find that approximately 1,000 CRPs are necessary to train models that predict response bits better than random chance. Given the significant challenge of acquiring a vast number of CRPs from a photonic PUF, our results demonstrate photonic PUF resilience against such attacks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs and their use for IP protection,” in Crypt. Hardware and Embedded Systems: 9th Int’l Workshop.   Springer, 2007, pp. 63–80.
  2. R. Maes, “An accurate probabilistic reliability model for silicon PUFs,” in Crypt. Hardware and Embedded Systems: 15th Int’l Workshop.   Springer, 2013, pp. 73–89.
  3. A. Maiti and P. Schaumont, “Improved ring oscillator PUF: An FPGA-friendly secure primitive,” Journal of cryptology, vol. 24, pp. 375–397, 2011.
  4. T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young, “A PUF taxonomy,” Applied physics reviews, vol. 6, no. 1, 2019.
  5. M. J. Pelgrom, A. C. Duinmaijer, and A. P. Welbers, “Matching properties of mos transistors,” IEEE Journal of solid-state circuits, vol. 24, no. 5, pp. 1433–1439, 1989.
  6. K. Lofstrom, W. R. Daasch, and D. Taylor, “IC identification circuit using device mismatch,” in 2000 IEEE Int’l Solid-State Circuits Conf. Digest of Tech. Papers.   IEEE, 2000, pp. 372–373.
  7. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.
  8. B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Controlled physical random functions,” in 18th Annual Computer Security App. Conf. Proceed.   IEEE, 2002, pp. 149–160.
  9. ——, “Silicon physical random functions,” in Proceed. of the 9th ACM Conf. on Computer and Communications Security, 2002, pp. 148–160.
  10. J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “A technique to build a secret key in integrated circuits for identification and authentication applications,” in Symp. on VLSI Circuits Digest of Tech. Papers.   IEEE, 2004, pp. 176–179.
  11. J. Delvaux, “Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF–FSMS,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 8, pp. 2043–2058, 2019.
  12. N. A. Hazari, A. Oun, and M. Niamat, “Machine learning vulnerability analysis of FGPA-based ring oscillator PUFs and counter measures,” ACM JETC, vol. 17, no. 3, pp. 1–20, 2021.
  13. S. Kumar and M. Niamat, “Machine learning based modeling attacks on a configurable PUF,” in IEEE Nat’l Aerospace and Electronics Conf.   IEEE, 2018, pp. 169–173.
  14. W. Ge, S. Hu, J. Huang, B. Liu, and M. Zhu, “FPGA implementation of a challenge pre-processing structure arbiter PUF designed for machine learning attack resistance,” IEICE Electronics Express, vol. 17, no. 2, pp. 20 190 670–20 190 670, 2020.
  15. P. Santikellur, A. Bhattacharyay, and R. S. Chakraborty, “Deep learning based model building attacks on arbiter PUF compositions,” Cryptology ePrint Archive, 2019.
  16. T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “Implementation of double arbiter PUF and its performance evaluation on FPGA,” in The 20th Asia and South Pacific Design Automation Conf.   IEEE, 2015, pp. 6–7.
  17. A. Aghaie and A. Moradi, “Inconsistency of simulation and practice in delay-based strong PUFs,” IACR Trans. on Crypt. Hardware and Embedded Systems, pp. 520–551, 2021.
  18. M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling attacks using deep learning techniques to break the security of double arbiter PUFs,” in Design, automation & test in Europe Conf.   IEEE, 2019, pp. 204–209.
  19. I. Saha, R. R. Jeldi, and R. S. Chakraborty, “Model building attacks on physically unclonable functions using genetic programming,” in IEEE Int’l Symp. on Hardware-Oriented Security and Trust.   IEEE, 2013, pp. 41–44.
  20. V. R. Laguduva, S. Katkoori, and R. Karam, “Machine learning attacks and countermeasures for PUF-based IoT edge node security,” SN Computer Science, vol. 1, pp. 1–13, 2020.
  21. Q. Guo, J. Ye, Y. Gong, Y. Hu, and X. Li, “Efficient attack on non-linear current mirror PUF with genetic algorithm,” in IEEE 25th Asian Test Symposium.   IEEE, 2016, pp. 49–54.
  22. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, “Modeling attacks on physical unclonable functions,” in Proceed. of the 17th ACM Conf. on Computer and communications security, 2010, pp. 237–249.
  23. R. Van Den Berg, B. Skoric, and V. van der Leest, “Bias-based modeling and entropy analysis of PUFs,” in Proceed. of the 3rd Int’l Workshop on Trustworthy embedded devices, 2013, pp. 13–20.
  24. J. Yoon and H. Lee, “PUFGAN: Embracing a self-adversarial agent for building a defensible edge security architecture,” in IEEE INFOCOM 2020.   IEEE, 2020, pp. 904–913.
  25. F. Ganji, S. Tajik, F. Fäßler, and J.-P. Seifert, “Strong machine learning attack against PUFs with no mathematical model,” in Crypt. Hardware and Embedded Systems: 18th Int’l.   Springer, 2016, pp. 391–411.
  26. D. L. MacFarlane, H. Shahoei, I. G. Achu, E. Stewart, W. V. Oxford, and M. A. Thornton, “Multiple-valued logic physically unclonable function in photonic integrated circuits,” in 2023 IEEE 53rd ISMVL.   IEEE, 2023, pp. 184–189.
  27. R. C. Jones, “A new calculus for the treatment of optical systems. iv.” Josa, vol. 32, no. 8, pp. 486–493, 1942.
  28. C. Helfmeier, C. Boit, D. Nedospasov, S. Tajik, and J.-P. Seifert, “Physical vulnerabilities of physically unclonable functions,” in Design, Automation & Test in Europe Conf.   IEEE, 2014, pp. 1–4.
  29. H. Shahoei, I. G. Achu, E. J. Stewart, U. Tariq, W. V. Oxford, M. A. Thornton, and D. L. MacFarlane, “Silicon photonics 2×\times× 2 trench coupler design and foundry fabrication,” Applied Optics, vol. 61, no. 16, pp. 4927–4931, 2022.
  30. U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction and overview,” in Design, Automation & Test in Europe Conf., 2014.
  31. R. Naveenkumar, N. Sivamangai, A. Napolean, and S. S. S. Priya, “Design and evaluation of XOR arbiter physical unclonable function and its implementation on FPGA in hardware security applications,” Journal of Electronic Testing, vol. 38, no. 6, pp. 653–666, 2022.
  32. M. H. Mahalat, S. Mandal, A. Mondal, and B. Sen, “An efficient implementation of arbiter puf on FPGA for IoT application,” in 32nd IEEE Int’l SOCC.   IEEE, 2019, pp. 324–329.
  33. D. P. Sahoo, R. S. Chakraborty, and D. Mukhopadhyay, “Towards ideal arbiter PUF design on Xilinx FPGA: A practitioner’s perspective,” in Euromicro Conf. on Digital System Design.   IEEE, 2015, pp. 559–562.
  34. A. Dodda, S. Subbulakshmi Radhakrishnan, T. F. Schranghamer, D. Buzzell, P. Sengupta, and S. Das, “Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks,” Nature Electronics, vol. 4, no. 5, pp. 364–374, 2021.
  35. A. A. Siddhanti, S. Bodapati, A. Chattopadhyay, S. Maitra, D. Roy, and P. Stănică, “Analysis of the strict avalanche criterion in variants of arbiter-based physically unclonable functions,” in Progress in Cryptology: 20th Int’l Conf. on Cryptology.   Springer, 2019, pp. 556–577.
  36. F. Ganji, S. Tajik, and J.-P. Seifert, “Let me prove it to you: RO PUFs are provably learnable,” in Info. Security and Cryptology: 18th Int’l Conference.   Springer, 2016, pp. 345–358.
  37. ——, “Why attackers win: on the learnability of XOR arbiter PUFs,” in Trust and Trustworthy Computing: 8th Int’l Conf.   Springer, 2015, pp. 22–39.
  38. ——, “PAC learning of arbiter PUFs,” Journal of Cryptographic Engineering, vol. 6, pp. 249–258, 2016.
  39. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceed. of the 27th Int’l Conf. on machine learning, 2010, pp. 807–814.
  40. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Int’l Conf. on machine learning, 2015, pp. 448–456.
  41. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.” in ICLR (Poster), Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
  42. I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,” in Int’l Conf. on Learning Representations, 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.