Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Response Entropy of APUFs (2406.19975v1)

Published 28 Jun 2024 in cs.CR

Abstract: A Physically Unclonable Function (PUF) is a hardware security primitive used for authentication and key generation. It takes an input bit-vector challenge and produces a single-bit response, resulting in a challenge-response pair (CRP). The truth table of all challenge-response pairs of each manufactured PUF should look different due to inherent manufacturing randomness, forming a digital fingerprint. A PUF's entropy (the entropy of all the responses, taken over the manufacturing randomness and uniformly selected challenges) has been studied before and is a challenging problem. Here we explore a related notion -- the response entropy, which is the entropy of an arbitrary response given knowledge of one (and two) other responses. This allows us to explore how knowledge of some CRP(s) impacts the ability to guess another response. The Arbiter PUF (APUF) is a well-known PUF architecture based on accumulated delay differences between two paths. In this paper, we obtain in closed form the probability mass function of any arbitrary response given knowledge of one or two other arbitrary CRPs for the APUF architecture. This allows us to obtain the conditional response entropy and then to define and obtain the size of the entropy bins (challenge sets with the same conditional response entropy) given knowledge of one or two CRPs. All of these results depend on the probability that two different challenge vectors yield the same response, termed the response similarity of those challenges. We obtain an explicit closed form expression for this. This probability depends on the statistical correlations induced by the PUF architecture together with the specific known and to-be-guessed challenges. As a by-product, we also obtain the optimal (minimizing probability of error) predictor of an unknown challenge given access to one (or two) challenges and the associated predictability.

Summary

We haven't generated a summary for this paper yet.