Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computational supremacy in quantum simulation (2403.00910v1)

Published 1 Mar 2024 in quant-ph, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. Establishing this capability, especially for impactful and meaningful problems, remains a central challenge. One such problem is the simulation of nonequilibrium dynamics of a magnetic spin system quenched through a quantum phase transition. State-of-the-art classical simulations demand resources that grow exponentially with system size. Here we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schr\"odinger equation. We demonstrate area-law scaling of entanglement in the model quench in two-, three- and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for classical approaches. We assess approximate methods based on tensor networks and neural networks and conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe. Thus quantum annealers can answer questions of practical importance that classical computers cannot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. J. Preskill, Quantum computing and the entanglement frontier (2012), arXiv:1203.5813 .
  2. C. Oh, L. Jiang, and B. Fefferman, Spoofing Cross-Entropy Measure in Boson Sampling, Physical Review Letters 131, 010401 (2023).
  3. T. Begušić, J. Gray, and G. K.-L. Chan, Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance, Science Advances 10, eadk4321 (2024).
  4. E. G. D. Torre and M. M. Roses, Dissipative mean-field theory of IBM utility experiment (2023), arXiv:2308.01339 .
  5. T. Kadowaki and H. Nishimori, Quantum annealing in the transverse Ising model, Physical Review E 58, 5355 (1998).
  6. W. H. Zurek, Cosmological experiments in superfluid helium?, Nature 317, 505 (1985).
  7. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2011).
  8. P. Calabrese and J. Cardy, Time Dependence of Correlation Functions Following a Quantum Quench, Physical Review Letters 96, 136801 (2006).
  9. A. del Campo and W. H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, International Journal of Modern Physics A 29, 1430018 (2014).
  10. D. Rossini and E. Vicari, Coherent and dissipative dynamics at quantum phase transitions, Phys. Rep. 936, 1 (2021), Coherent and dissipative dynamics at quantum phase transitions.
  11. A. Das and B. K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation, Rev. Mod. Phys. 80, 1061 (2008).
  12. Materials and methods are available as supplementary materials.
  13. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011).
  14. E. Stoudenmire and S. R. White, Studying Two-Dimensional Systems with the Density Matrix Renormalization Group, Annual Review of Condensed Matter Physics 3, 111 (2012).
  15. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics 349, 117 (2014).
  16. G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355, 602 (2017).
  17. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277 (2010).
  18. P. C. G. Vlaar and P. Corboz, Simulation of three-dimensional quantum systems with projected entangled-pair states, Phys. Rev. B 103, 205137 (2021).
  19. M. Medvidović and G. Carleo, Classical variational simulation of the quantum approximate optimization algorithm, npj Quantum Information 7, 101 (2021).
  20. G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum Computations, Physical Review Letters 91, 147902 (2003).
  21. M. Guo, R. N. Bhatt, and D. A. Huse, Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field, Physical Review Letters 72, 4137 (1994).
  22. N. Read, S. Sachdev, and J. Ye, Landau theory of quantum spin glasses of rotors and Ising spins, Physical Review B 52, 384 (1995).
  23. K. Boothby, A. D. King, and J. Raymond, Zephyr Topology of D-Wave Quantum Processors, Tech. Rep. (D-Wave, 2021).
  24. C. McCreesh, P. Prosser, and J. Trimble, The Glasgow Subgraph Solver: Using Constraint Programming to Tackle Hard Subgraph Isomorphism Problem Variants, in Graph Transformation, edited by F. Gadducci and T. Kehrer (Springer International Publishing, Cham, 2020) pp. 316–324.
  25. M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys. 144, 443 (1992).
  26. S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
  27. S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
  28. M. B. Hastings, An area law for one-dimensional quantum systems, Journal of statistical mechanics: theory and experiment 2007, P08024 (2007).
  29. M. Fishman, S. White, and E. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Physics Codebases 4, 4 (2022).
  30. G. Alvarez, The density matrix renormalization group for strongly correlated electron systems: A generic implementation, Computer Physics Communications 180, 1572 (2009).
  31. M. Yang and S. R. White, Time-dependent variational principle with ancillary krylov subspace, Phys. Rev. B 102, 094315 (2020).
  32. J.-W. Li, A. Gleis, and J. Von Delft, Time-dependent variational principle with controlled bond expansion for matrix product states, arXiv preprint arXiv:2208.10972  (2022).
  33. J. Unfried, J. Hauschild, and F. Pollmann, Fast time evolution of matrix product states using the qr decomposition, Phys. Rev. B 107, 155133 (2023).
  34. Y.-Y. Shi, L.-M. Duan, and G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A 74, 022320 (2006).
  35. G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99, 220405 (2007).
  36. M. Rizzi, S. Montangero, and G. Vidal, Simulation of time evolution with multiscale entanglement renormalization ansatz, Phys. Rev. A 77, 052328 (2008).
  37. F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, arXiv preprint cond-mat/0407066  (2004).
  38. Y. Ge and J. Eisert, Area laws and efficient descriptions of quantum many-body states, New Journal of Physics 18, 083026 (2016).
  39. I. L. Markov and Y. Shi, Simulating quantum computation by contracting tensor networks, SIAM Journal on Computing 38, 963 (2008).
  40. J. Dziarmaga, Time evolution of an infinite projected entangled pair state: Neighborhood tensor update, Phys. Rev. B 104, 094411 (2021).
  41. H. C. Jiang, Z. Y. Weng, and T. Xiang, Accurate determination of tensor network state of quantum lattice models in two dimensions, Phys. Rev. Lett. 101, 090603 (2008).
  42. M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Algorithms for finite projected entangled pair states, Phys. Rev. B 90, 064425 (2014).
  43. F. Pan, K. Chen, and P. Zhang, Solving the sampling problem of the sycamore quantum circuits, Phys. Rev. Lett. 129, 090502 (2022).
  44. G. H. Low and I. L. Chuang, Hamiltonian Simulation by Qubitization, Quantum 3, 163 (2019).
  45. M. P. Zaletel and F. Pollmann, Isometric tensor network states in two dimensions, Phys. Rev. Lett. 124, 037201 (2020).
  46. R. Alkabetz and I. Arad, Tensor networks contraction and the belief propagation algorithm, Phys. Rev. Res. 3, 023073 (2021).
  47. B. Dozier and J. Sapir, Simple versus nonsimple loops on random regular graphs, Journal of Graph Theory , 1 (2023).
  48. J. Dziarmaga and J. M. Mazur, Tensor network simulation of the quantum Kibble-Zurek quench from the Mott to the superfluid phase in the two-dimensional Bose-Hubbard model, Physical Review B 107, 144510 (2023).
  49. P. Grassberger, Entropy estimates from insufficient samplings, arXiv: Data Analysis, Statistics and Probability  (2003).
  50. P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional systems, Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
  51. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of statistical mechanics: theory and experiment 2004, P06002 (2004).
  52. S. Czischek, M. Gärttner, and T. Gasenzer, Quenches near ising quantum criticality as a challenge for artificial neural networks, Physical Review B 98, 024311 (2018).
  53. C. Roth and A. H. MacDonald, Group convolutional neural networks improve quantum state accuracy (2021), 2104.05085 .
  54. M. Schmitt and M. Heyl, Quantum many-body dynamics in two dimensions with artificial neural networks, Physical Review Letters 125, 100503 (2020).
  55. T. Schmale, M. Reh, and M. Gärttner, Efficient quantum state tomography with convolutional neural networks, npj Quantum Information 8, 115 (2022).
  56. M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Supplementing Recurrent Neural Network Wave Functions with Symmetry and Annealing to Improve Accuracy (2022) 35th Conference on Neural Information Processing Systems, arXiv:2207.14314 [cond-mat.dis-nn] .
  57. M. Hibat-Allah, R. G. Melko, and J. Carrasquilla, Investigating topological order using recurrent neural networks, Phys. Rev. B 108, 075152 (2023).
  58. K. Sprague and S. Czischek, Variational monte carlo with large patched transformers (2023), 2306.03921 .
  59. F. Becca and S. Sorella, Quantum Monte Carlo Approaches for Correlated Systems (Cambridge University Press, 2017).
  60. M. Bortone, Y. Rath, and G. H. Booth, Impact of conditional modelling for universal autoregressive quantum states, arXiv preprint arXiv:2306.05917 10.48550/arXiv:2306.05917 (2023).
  61. S.-I. Amari, Natural gradient works efficiently in learning, Neural computation 10, 251 (1998).
  62. S. Barison, F. Vicentini, and G. Carleo, An efficient quantum algorithm for the time evolution of parameterized circuits, Quantum 5, 512 (2021).
  63. I. L. Gutiérrez and C. B. Mendl, Real time evolution with neural-network quantum states, Quantum 6, 627 (2022).
  64. A. Gelman and D. B. Rubin, Inference from iterative simulation using multiple sequences, Statistical Science 7, 457 (1992).
  65. T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9, 1387–1398 (1976).
  66. J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59, 1063 (2010).
  67. H. Rieger and A. P. Young, Zero-temperature quantum phase transition of a two-dimensional Ising spin glass, Physical Review Letters 72, 4141 (1994).
  68. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science 220, 671 (1983).
  69. J. A. Smolin and G. Smith, Classical signature of quantum annealing, Frontiers in Physics 2, 8 (2014).
  70. S. W. Shin, G. Smith, J. A. Smolin, and U. Vazirani, How “Quantum” is the D-Wave Machine? (2014), arXiv:1401.7087 .
  71. T. Albash and J. Marshall, Comparing Relaxation Mechanisms in Quantum and Classical Transverse-Field Annealing, Physical Review Applied 15, 014029 (2021).
  72. S. Kumar and P. Majumdar, A travelling cluster approximation for lattice fermions strongly coupled to classical degrees of freedom, The European Physical Journal B 50, 571 (2006).
Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper shows that superconducting quantum annealers achieve computational supremacy by efficiently simulating quantum phase transitions in TFIMs.
  • The study employs QA processors across various lattice dimensions, outperforming classical tensor network methods in speed and scalability.
  • Extensive numerical evidence confirms that QA processors can simulate systems with thousands of qubits, highlighting potential in material science and AI.

Analysis of Computational Supremacy in Quantum Simulation

The paper, titled "Computational Supremacy in Quantum Simulation," presents an evaluation of quantum anealing (QA) processors as an alternative computational paradigm for simulating non-equilibrium quantum dynamics. The core assertion is their superior capability in tackling problems that are currently unmanageable for classical computational frameworks. This evaluation focuses on simulating quantum phase transitions in transverse-field Ising models (TFIMs). The paper's applicability spans condensed matter physics and optimization domains, marking the problems as relevant to practical interests.

Design and Methodology

The research employs superconducting QA processors to simulate quantum annealing processes through multiple system structures such as 2D, 3D, and infinite-dimensional lattices. It is crucial to highlight that the systems' dynamics are gauged by transitioning through quantum phase changes—a zone traditionally plagued by exponential difficulty in classical computational approaches. The QA processors generate solutions that align closely with the Schrödinger equation for these systems, demonstrating a significant efficiency in performance when compared to known classical simulation capabilities.

Comparative Analysis with Classical Methods

The paper contrasts QA processors' efficiency to classical methodologies, employing tensor networks and neural networks. Notably, it deploys matrix product states (MPS) and projected entangled-pair states (PEPS) as representatives of the classical approaches. Among these, MPS demonstrates scalability limitations due to area-law constraints, particularly in high-dimension simulations where entanglement entropy grows significantly. Conclusively, the MPS methods meet substantial computational barriers in this domain, appended by polynomial scaling demands in resource allocation like memory and time requirements.

The practical constraints highlight the QA's advantage in this context: the measured performance of the QA processors, in terms of speed and scalability, reflects both short-term superiority and potential untapped capacity for larger system sizes.

Findings and Numerical Evidence

The paper supports these claims with substantive numerical evidence. It demonstrates that QA processors outperform even the finest classical approaches when simulations go beyond minor scales. The quantum simulation resolves complex states at significant sizes (spanning several thousand qubits), which is presently impractical using classical simulation to both time and resource intensiveness. For instance, computational requirements extrapolated for classical systems indicated runtime scales extending to millions of years on existing supercomputing platforms—even with optimistic scaling assumptions.

Furthermore, the paper emphasizes the scaling of critical dynamic exponents under these QA simulations, which remain consistent with theoretical expectations across various lattice topologies.

Practical Implications and Future Prospects

The implications extend toward promising advancements in material sciences and AI, leveraging QA's potential beyond experimental scales in optimization-related scenarios. On a broader spectrum, the work encourages the growth of quantum computation in practical domains where classical methods scale infeasibly.

Conclusions

In conclusion, the paper delineates clear strides QA processors have taken over classic computational methods in quantum simulations. This work underscores QA systems as a viable avenue, particularly as computations explore scenarios traditionally beyond classical reach. Therefore, QA presents not only a robust alternative but also catalyzes the advent of novel computational frameworks for solving extensive, high-dimensional quantum dynamical systems.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

HackerNews