Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Crosstalk-Robust Quantum Control in Multimode Bosonic Systems (2403.00275v2)

Published 1 Mar 2024 in quant-ph

Abstract: High-coherence superconducting cavities offer a hardware-efficient platform for quantum information processing. To achieve universal operations of these bosonic modes, the requisite nonlinearity is realized by coupling them to a transmon ancilla. However, this configuration is susceptible to crosstalk errors in the dispersive regime, where the ancilla frequency is Stark-shifted by the state of each coupled bosonic mode. This leads to a frequency mismatch of the ancilla drive, lowering the gate fidelities. To mitigate such coherent errors, we employ quantum optimal control to engineer ancilla pulses that are robust to the frequency shifts. These optimized pulses are subsequently integrated into a recently developed echoed conditional displacement (ECD) protocol for executing single- and two-mode operations. Through numerical simulations, we examine two representative scenarios: the preparation of single-mode Fock states in the presence of spectator modes and the generation of two-mode entangled Bell-cat states. Our approach markedly suppresses crosstalk errors, outperforming conventional ancilla control methods by orders of magnitude. These results provide guidance for experimentally achieving high-fidelity multimode operations and pave the way for developing high-performance bosonic quantum information processors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  2. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
  3. E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A 55, 900 (1997).
  4. J. Gambetta, The hardware and software for the era of quantum utility is here.
  5. E. Rico, M. Dalmonte, P. Zoller, D. Banerjee, M. Bögli, P. Stebler, and U.-J. Wiese, SO(3) “nuclear physics” with ultracold gases, Ann. Phys. 393, 466 (2018).
  6. D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
  7. A. L. Grimsmo and S. Puri, Quantum error correction with the gottesman-kitaev-preskill code, PRX Quantum 2, 020101 (2021).
  8. It’s crucial to differentiate this form of crosstalk from that caused by the cross-Kerr effect, which is generally negligible in comparison to the Stark shift-induced crosstalk.
  9. E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
  10. F. Motzoi and F. K. Wilhelm, Improving frequency selection of driven pulses using derivative-based transition suppression, Phys. Rev. A 88, 062318 (2013).
  11. M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates, Phys. Rev. A 79, 013819 (2009).
  12. G. Dridi, K. Liu, and S. Guérin, Optimal robust quantum control by inverse geometric optimization, Phys. Rev. Lett. 125, 250403 (2020b).
  13. B. T. Torosov and N. V. Vitanov, Smooth composite pulses for high-fidelity quantum information processing, Phys. Rev. A 83, 053420 (2011).
  14. P. Owrutsky and N. Khaneja, Control of inhomogeneous ensembles on the bloch sphere, Phys. Rev. A 86, 022315 (2012).
  15. R. Tycko, Broadband population inversion, Phys. Rev. Lett. 51, 775 (1983).
  16. M. R. Abdelhafez, Quantum Optimal Control Using Automatic Differentiation, Ph.D. thesis, The University of Chicago (2019).
  17. P. Reinhold, Controlling error-correctable bosonic qubits, Ph.D. thesis, Yale Univ. (2019).
  18. J. Allen, Robust Optimal Control of the Cross-Resonance Gate in Superconducting Qubits, Ph.D. thesis, Univ. of Surrey (2020).
  19. R. L. Kosut, M. D. Grace, and C. Brif, Robust control of quantum gates via sequential convex programming, Phys. Rev. A 88, 052326 (2013).
  20. A. G. Baydin and B. A. Pearlmutter, Automatic differentiation of algorithms for machine learning, arXiv:1404.7456  (2014).
  21. M. Abdelhafez, D. I. Schuster, and J. Koch, Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation ad, Phys. Rev. A 99, 052327 (2019).
  22. We have conducted numerical simulations to verify this point.
  23. To efficiently simulate an open system with a large Hilbert space, we perform Monte Carlo simulations with 2000 quantum trajectories.
  24. Y. Lai and H. A. Haus, Characteristic functions and quantum measurements of optical observables, Quantum Opt. 1, 99 (1989).
  25. L. S. Braunstein and P. Van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube