From reasonable postulates to generalised Hamiltonian systems (2403.00038v1)
Abstract: Hamiltonian mechanics describes the evolution of a system through its Hamiltonian. The Hamiltonian typically also represents the energy observable, a Noether-conserved quantity associated with the time-invariance of the law of evolution. In both quantum and classical mechanics, Hamiltonian mechanics demands a precise relationship between time evolution and observable energy, albeit using slightly different terminology. We distil basic conditions satisfied in both quantum and classical mechanics, including canonical coordinate symmetries and inner product invariance. We express these conditions in the framework of generalised probabilistic theories, which includes generalizing the definition of energy eigenstates in terms of time-invariant properties of the Hamiltonian system. By postulating these conditions to hold, we derive a unified Hamiltonian system model. This unified framework describes quantum and classical mechanics in a consistent language, facilitating their comparison. We moreover discuss alternative theories: an equation of motion given by a mixture of commutation relations, an information-restricted version of quantum theory, and Spekken's toy theory. The findings give a deeper understanding of the Hamiltonian in quantum and classical theories and point to several potential research topics.
- V. I. Arnold, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
- L. Hardy, arXiv:quant-ph/0101012 .
- J. Barrett, Physical Review A 75, 032304 (2007).
- P. Janotta and H. Hinrichsen, Journal of Physics A: Mathematical and Theoretical 47, 323001 (2014).
- M. P. Müller and C. Ududec, Physical Review Letters 108, 130401 (2012).
- O. C. O. Dahlsten, A. J. P. Garner, and V. Vedral, Nature Communications 5, 4592 (2014).
- M. Plavála, Phys. Rep 1033, 1 (2023).
- H.-T. Elze, Journal of Physics Conference Series 442, 10.1088/1742-6596/442/1/012007 (2013).
- D. R. Terno, arXiv:2309.05014 .
- H. Barnum, M. P. Müller, and C. Ududec, New Journal of Physics 16, 123029 (2014).
- D. Branford, O. C. O. Dahlsten, and A. J. P. Garner, Foundations of Physics 48, 982 (2018).
- M. F. Pusey, Foundations of Physics 42, 688 (2012).
- M. Plávala and M. Kleinmann, Phys. Rev. Lett. 128, 040405 (2022).
- M. Plávala and M. Kleinmann, arXiv:2212.12267 .
- L. Jiang, O. Dahlsten, and D. Terno, In progress (2023).
- H. W. Lee, Physics Reports-Review Section of Physics Letters 259, 147 (1995).
- E. Wigner, Physical Review 40, 749 (1932).
- A. Royer, Phys. Rev. A 15, 449 (1977).
- Y. L. Lin and O. C. Dahlsten, Physical Review A 102, 062210 (2020).
- H. Weyl, The theory of groups and quantum mechanics (Courier Corporation, 1950).
- H. Barnum and A. Wilce, Electronic Notes in Theoretical Computer Science 270, 3 (2011).
- H. Goldstein, Classical a Mechanics (Addison-Weasley, Reading MA, 1980).
- B. O. Koopman, Proceedings of the National Academy of Sciences 17, 315 (1931).
- A. Peres and D. R. Terno, Phys. Rev. A 63, 022101 (2001).
- L. L. Salcedo, Phys. Rev. A 85, 022127 (2012).
- M. Reed and B. Simon, I: Functional analysis, Vol. 1 (Academic press, 1981).
- P. A. M. Dirac, Physical Review 73, 1092 (1948).
- A. Pais and G. E. Uhlenbeck, Physical Review 79, 145 (1950).
- T. Hakioglu and E. Tepedelenlioglu, Journal of Physics A: Mathematical and General 33, 6357 (2000).
- R. W. Spekkens, Physical Review A 75, 032110 (2007).
- J. Caro and L. L. Salcedo, Physical Review A 60, 842 (1999).
- S. Debendranath, Journal of Physics A: Mathematical and General 37, 997 (2004).
- M. J. Lake, arXiv:2008.13183 .
- M. Berry, Physica Scripta 40, 335 (1989).
- H. J. Korsch and M. V. Berry, Physica D: Nonlinear Phenomena 3, 627 (1981).
- L. Catani and D. E. Browne, New Journal of Physics 19, 073035 (2017).
- R. W. Spekkens, Physical Review Letters 101, 020401 (2008).
- S. E. Venegas-Andraca, Quantum Information Processing 11, 1015 (2012).