Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Unification of energy concepts in generalised phase space theories (2403.01398v1)

Published 29 Feb 2024 in quant-ph and physics.class-ph

Abstract: We consider how to describe Hamiltonian mechanics in generalised probabilistic theories with the states represented as quasi-probability distributions. We give general operational definitions of energy-related concepts. We define generalised energy eigenstates as the purest stationary states. Planck's constant plays two different roles in the framework: the phase space volume taken up by a pure state and a dynamical factor. The Hamiltonian is a linear combination of generalised energy eigenstates. This allows for a generalised Liouville time-evolution equation that applies to quantum and classical Hamiltonian mechanics and more. The approach enables a unification of quantum and classical energy concepts and a route to discussing energy in a wider set of theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. L. Hardy, arXiv preprint quant-ph/0101012  (2001).
  2. J. Barrett, Physical Review A 75, 032304 (2007).
  3. P. Janotta and H. Hinrichsen, Journal of Physics A: Mathematical and Theoretical 47, 323001 (2014).
  4. D. R. Terno, arXiv preprint arXiv:2309.05014  (2023).
  5. H. Barnum, M. P. Müller, and C. Ududec, New Journal of Physics 16, 123029 (2014).
  6. Y. L. Lin and O. C. Dahlsten, Physical Review A 102, 062210 (2020).
  7. D. Branford, O. C. O. Dahlsten, and A. J. P. Garner, Foundations of Physics 48, 982 (2018).
  8. M. Plávala and M. Kleinmann, Phys. Rev. Lett. 128, 040405 (2022a).
  9. M. Plávala and M. Kleinmann, arXiv preprint arXiv:2212.12267  (2022b).
  10. L. Jiang, O. Dahlsten, and D. Terno, In progress (2024).
  11. V. I. Arnold, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
  12. H. W. Lee, Physics Reports-Review Section of Physics Letters 259, 147 (1995).
  13. E. Wigner, Physical Review 40, 749 (1932).
  14. A. Royer, Phys. Rev. A 15, 449 (1977).
  15. T. Hakioglu and E. Tepedelenlioglu, Journal of Physics A: Mathematical and General 33, 6357 (2000).
  16. M. P. Müller and C. Ududec, Phys. Rev. Lett. 108, 130401 (2012).
  17. O. C. O. Dahlsten, A. J. P. Garner, and V. Vedral, Nature Communications 5, 4592 (2014).
  18. H. Barnum and A. Wilce, Electronic Notes in Theoretical Computer Science 270, 3 (2011).
  19. S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A 86, 012103 (2012).
  20. N. T. Zung, Arch. Rational Mech. Anal. 229, 789–833 (2018).
  21. J. Smith, Journal of Algebra 456, 46 (2016).
  22. A. Peres, Quantum theory: concepts and methods (Kluwer, Dordrecht, 1995).
  23. S. E. Venegas-Andraca, Quantum Information Processing 11, 1015 (2012).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com