First simultaneous measurement of differential muon-neutrino charged-current cross sections on argon for final states with and without protons using MicroBooNE data (2402.19281v2)
Abstract: We report the first double-differential neutrino-argon cross section measurement made simultaneously for final states with and without protons for the inclusive muon neutrino charged-current interaction channel. The proton kinematics of this channel are further explored with a differential cross section measurement as a function of the leading proton's kinetic energy that extends across the detection threshold. These measurements utilize data collected using the MicroBooNE detector from 6.4$\times10{20}$ protons on target from the Fermilab Booster Neutrino Beam with a mean neutrino energy of $\sim$0.8 GeV. Extensive data-driven model validation utilizing the conditional constraint formalism is employed. This motivates enlarging the uncertainties with an empirical reweighting approach to minimize the possibility of extracting biased cross section results. The extracted nominal flux-averaged cross sections are compared to widely used event generator predictions revealing severe mismodeling of final states without protons for muon neutrino charged-current interactions, possibly from insufficient treatment of final state interactions. These measurements provide a wealth of new information useful for improving event generators which will enhance the sensitivity of precision measurements in neutrino experiments.
- M. Tanabashi et al. (Particle Data Group), Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
- X. Qian and P. Vogel, Neutrino Mass Hierarchy, Prog. Part. Nucl. Phys. 83, 1 (2015), arXiv:1505.01891 [hep-ex] .
- M. A. Acero et al. (NOν𝜈\nuitalic_νA Collaboration), Improved measurement of neutrino oscillation parameters by the NOν𝜈\nuitalic_νA experiment, Phys. Rev. D 106, 032004 (2022), arXiv:2108.08219 [hep-ex] .
- K. Abe et al. (T2K Collaboration), Improved constraints on neutrino mixing from the T2K experiment with 3.13×10213.13superscript10213.13\times 10^{21}3.13 × 10 start_POSTSUPERSCRIPT 21 end_POSTSUPERSCRIPT protons on target, Phys. Rev. D 103, 112008 (2021), arXiv:2101.03779 [hep-ex] .
- B. Abi et al. (DUNE Collaboration), Long-baseline neutrino oscillation physics potential of the DUNE experiment, Eur. Phys. J. C 80, 978 (2020), arXiv:2006.16043 [hep-ex] .
- R. Acciarri et al., A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam (2015), arXiv:1503.01520 [physics.ins-det] .
- C. Rubbia, The liquid-argon time projection chamber: a new concept for neutrino detectors, Tech. Rep. CERN-EP-INT-77-8 (1977).
- H. H. Chen et al., A Neutrino detector sensitive to rare processes. I. A Study of neutrino electron reactions, Tech. Rep. FERMILAB-PROPOSAL-0496 (1976).
- W. Willis and V. Radeka, Liquid-argon ionization chambers as total-absorption detectors, Nucl. Instrum. Meth. A 120, 221 (1974).
- D. R. Nygren, The Time Projection Chamber: A New 4 π𝜋\piitalic_π Detector for Charged Particles, Tech. Rep. PEP-0144 (SLAC, 1974).
- F. Cavanna, A. Ereditato, and B. T. Fleming, Advances in liquid argon detectors, Nucl. Instrum. Meth. A 907, 1 (2018).
- L. Alvarez-Ruso et al., NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering, Prog. Part. Nucl. Phys. 100, 1 (2018).
- S. Nagu et al., Impact of cross-sectional uncertainties on DUNE sensitivity due to nuclear effects, Nucl. Phys. B 951, 114888 (2020).
- J. A. Formaggio and G. P. Zeller, From eV to EeV: Neutrino cross sections across energy scales, Rev. Mod. Phys 84, 1307 (2012).
- J. Nieves, J. E. Amaro, and M. Valverde, Inclusive quasielastic charged-current neutrino-nucleus reactions, Phys. Rev. C 70, 055503 (2004).
- J. W. Van Orden and T. W. Donnelly, Nuclear theory and event generators for charge-changing neutrino reactions, Phys. Rev. C 100, 044620 (2019).
- S. Dytman et al., Comparison of validation methods of simulations for final state interactions in hadron production experiments, Phys. Rev. D 104, 053006 (2021), arXiv:2103.07535 [hep-ph] .
- P. Abratenko et al. (MicroBooNE Collaboration), First Measurement of Energy-Dependent Inclusive Muon Neutrino Charged-Current Cross Sections on Argon with the MicroBooNE Detector, Phys. Rev. Lett. 128, 151801 (2022a).
- P. Abratenko et al. (MicroBooNE Collaboration), Measurement of triple-differential inclusive muon-neutrino charged-current cross section on argon with the MicroBooNE detector (2023a), arXiv:2307.06413 [hep-ex] .
- P. Abratenko et al. (MicroBooNE Collaboration), Search for an anomalous excess of inclusive charged-current νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions in the MicroBooNE experiment using Wire-Cell reconstruction, Phys. Rev. D 105, 112005 (2022b).
- P. Abratenko et al. (MicroBooNE Collaboration), Inclusive cross section measurements in final states with and without protons for charged-current νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT-ar scattering in MicroBooNE, arXiv preprint (2024), arXiv:XXXXXXXX [hep-ex] .
- P. Abratenko et al. (MicroBooNE Collaboration), Search for an anomalous excess of charged-current νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions without pions in the final state with the MicroBooNE experiment, Phys. Rev. D 105, 112004 (2022c).
- P. Abratenko et al. (MicroBooNE Collaboration), Differential cross section measurement of charged current νesubscript𝜈𝑒{\nu}_{e}italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT interactions without final-state pions in MicroBooNE, Phys. Rev. D 106, L051102 (2022d).
- R. Acciarri et al. (MicroBooNE Collaboration), Design and construction of the MicroBooNE detector, JINST 12 (02), P02017.
- A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Neutrino flux prediction at MiniBooNE, Phys. Rev. D 79, 072002 (2009).
- X. Qian et al., Three-dimensional Imaging for Large LArTPCs, JINST 13 (05), P05032, arXiv:1803.04850 [physics.ins-det] .
- R. Acciarri et al. (MicroBooNE Collaboration), Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC, JINST 12 (08), P08003, arXiv:1705.07341 [physics.ins-det] .
- C. Adams et al. (MicroBooNE Collaboration), Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation, JINST 13 (07), P07006, arXiv:1802.08709 [physics.ins-det] .
- C. Adams et al. (MicroBooNE Collaboration), Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE, JINST 13 (07), P07007, arXiv:1804.02583 [physics.ins-det] .
- P. Abratenko et al. (MicroBooNE Collaboration), Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation, JINST 17 (01), P01037.
- B. Graham, M. Engelcke, and L. van der Maaten, 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018) pp. 9224–9232.
- N. V. Smirnov, Estimate of deviation between empirical distribution functions in two independent samples, Bulletin Moscow University 2, 3 (1939).
- PSTAR at NIST: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.
- C. Adams et al. (MicroBooNE Collaboration), Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons, JINST 15 (03), P03022.
- P. Abratenko et al. (MicroBooNE Collaboration), Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector, Phys. Rev. Appl. 15, 064071 (2021b).
- W. Tang et al., Data Unfolding with Wiener-SVD Method, JINST 12 (10), P10002, arXiv:1705.03568 [physics.data-an] .
- L. Koch and S. Dolan, Treatment of flux shape uncertainties in unfolded, flux-averaged neutrino cross-section measurements, Phys. Rev. D 102, 113012 (2020).
- S. Gardiner, Mathematical methods for neutrino cross-section extraction, arXiv preprint (2024), arXiv:2401.04065 [hep-ex] .
- S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).
- L. Alvarez-Ruso et al. (GENIE Collaboration), Recent highlights from GENIE v3, Eur. Phys. J. ST 230, 4449 (2021).
- K. Abe et al. (T2K Collaboration), Measurement of double-differential muon neutrino charged-current interactions on C88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPTH88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT without pions in the final state using the T2K off-axis beam, Phys. Rev. D 93, 112012 (2016).
- P. Abratenko et al. (MicroBooNE Collaboration), New CC0πCC0𝜋\mathrm{CC}0\piCC0 italic_π GENIE model tune for MicroBooNE, Phys. Rev. D 105, 072001 (2022f).
- E. Snider and G. Petrillo, LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors, J. Phys. Conf. Ser 898, 042057 (2017).
- B. P. Roe, Statistical errors in monte carlo estimates of systematic errors, Nucl. Instrum. Meth. A 570, 159 (2007).
- P. Abratenko et al. (MicroBooNE Collaboration), Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data, Eur. Phys. J. C 82, 454 (2022g).
- M. Frate et al., Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes (2017), arXiv:1709.05681 [physics.data-an] .
- C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (The MIT Press, 2005).
- M. L. Eaton, Multivariate Statistics: a Vector Space Approach (John Wiley and Sons, 1983) pp. 116–117.
- T. Golan, J. Sobczyk, and J. Żmuda, NuWro: the Wrocław Monte Carlo Generator of Neutrino Interactions, Nucl. Phys. B Proc. Suppl. 229-232, 499 (2012).
- O. Buss et al., Transport-theoretical description of nuclear reactions, Phys. Rep. 512, 1 (2012).
- Y. Hayato and L. Pickering, The NEUT neutrino interaction simulation program library, Eur. Phys. J. ST 230, 4469 (2021).
- P. Stowell et al., NUISANCE: a neutrino cross-section generator tuning and comparison framework, JINST 12, P01016 (2017).
- U. Mosel, Neutrino event generators: foundation, status and future, J. Phys. G 46, 113001 (2019).
- U. Mosel, O. Lalakulich, and K. Gallmeister, Reaction mechanisms at MINERνAMINER𝜈A\mathrm{MINER}\nu\mathrm{A}roman_MINER italic_ν roman_A, Phys. Rev. D 89, 093003 (2014).
- K. Niewczas and J. T. Sobczyk, Nuclear transparency in Monte Carlo neutrino event generators, Phys. Rev. C 100, 015505 (2019).
- O. Lalakulich, K. Gallmeister, and U. Mosel, Many-body interactions of neutrinos with nuclei: Observables, Phys. Rev. C 86, 014614 (2012).
- X. G. Lu and other, Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy, Phys. Rev. C 94, 015503 (2016), arXiv:1512.05748 [nucl-th] .
- P. Abratenko et al. (MicroBooNE Collaboration), Multidifferential cross section measurements of νμsubscript𝜈𝜇{\nu}_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT-argon quasielasticlike reactions with the MicroBooNE detector, Phys. Rev. D 108, 053002 (2023b).
- P. Abratenko et al., First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector, Phys. Rev. Lett. 131, 101802 (2023c).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.