Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Broken detailed balance and entropy production in directed networks (2402.19157v5)

Published 29 Feb 2024 in physics.soc-ph, cond-mat.stat-mech, and q-bio.NC

Abstract: The structure of a complex network plays a crucial role in determining its dynamical properties. In this work, we show that the the degree to which a network is directed and hierarchically organised is closely associated with the degree to which its dynamics break detailed balance and produce entropy. We consider a range of dynamical processes and show how different directed network features affect their entropy production rate. We begin with an analytical treatment of a 2-node network followed by numerical simulations of synthetic networks using the preferential attachment and Erd\"os-Renyi algorithms. Next, we analyse a collection of 97 empirical networks to determine the effect of complex real-world topologies. Finally, we present a simple method for inferring broken detailed balance and directed network structure from multivariate time-series and apply our method to identify non-equilibrium dynamics and hierarchical organisation in both human neuroimaging and financial time-series. Overall, our results shed light on the consequences of directed network structure on non-equilibrium dynamics and highlight the importance and ubiquity of hierarchical organisation and non-equilibrium dynamics in real-world systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (121)
  1. J. A. Dunne, R. J. Williams, and N. D. Martinez, Food-web structure and network theory: The role of connectance and size, Proceedings of the National Academy of Sciences of the United States of America 99, 12917 (2002).
  2. M. O. Jackson, Social and Economic Networks (Princeton University Press, 2010).
  3. S. Wasserman, Social Network Analysis (Cambridge University Press, 1994).
  4. E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience 10, 186 (2009).
  5. D. S. Bassett and O. Sporns, Network neuroscience, Nature Neuroscience 20, 353–364 (2017).
  6. M. Newman, Networks (Oxford University Press, 2018).
  7. M. E. J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
  8. A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008).
  9. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (John Wiley & Sons, California, United States, 1968).
  10. S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824).
  11. E. Schrödinger, What is Life? The Physical Aspect of the Living Cell and Mind (Cambridge University Press, Cambridge, United Kingdom, 1944).
  12. G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Physical Review E 60 (1999).
  13. C. Jarzynski, Nonequilibrium equality for free energy differences, Physical Review Letters 78 (1997).
  14. E. H. Feng and G. E. Crooks, Length of time’s arrow, Physical Review Letters 101 (2008).
  15. K. C. Huang, Y. Meir, and N. S. Wingreen, Dynamic structures in escherichia coli: Spontaneous formation of MinE rings and MinD polar zones, Proceedings of the National Academy of Sciences of the United States of America 100, 12724 (2003).
  16. P. Mehta and D. J. Schwab, Energetic costs of cellular computation, Proceedings of the National Academy of Sciences of the United States of America 109, 17978 (2012).
  17. J. L. England, Statistical physics of self-replication, Journal of Chemical Physics 139 (2013).
  18. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports of Progress in Physics 475 (2012).
  19. M. Aguilera, M. Igarashi, and H. Shimazaki, Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model, Nature Communications 14 (2023).
  20. T. Herpich, J. Thingna, and M. Esposito, Collective power: minimal model for thermodynamics of nonequilibrium phase transitions, Physical Review X 8 (2018).
  21. M. Suñé and A. Imparato, Out-of-equilibrium clock model at the verge of criticality, Physical Review Letters 123 (2019).
  22. J.Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Reviews of Modern Physics 48 (1976).
  23. G. Oster, A. Perelson, and A. Katchalsky, Network thermodynamics, Nature 234, 393 (1971).
  24. R. Rao and M. Esposito, Nonequilibrium thermodynamics of chemical reaction networks: Wisdom from stochastic thermodynamics, Physical Review X 6 (2016).
  25. M. Polettini, A. Wachtel, and M. Esposito, Dissipation in noisy chemical networks: The role of deficiency, Journal of Chemical Physics 143 (2015).
  26. S. D. Cengio, V. Lecomte, and M. Polettini, Geometry of nonequilibrium reaction networks, Physical Review X 13 (2023).
  27. D. Papo and J. Buldú, Does the brain behave like a (complex) network? I. Dynamics, Physics of Life Reviews 48, 47 (2024).
  28. D. C. Krakauer, Symmetry–simplicity, broken symmetry–complexity, Interface Focus 13 (2023).
  29. S. Johnson, Digraphs are different: why directionality matters in complex systems, Journal of Physics: Complexity 1 (2020).
  30. M. Asllani and T. Carletti, Topological resilience in non-normal networked systems, Physical Review E 97 (2018).
  31. M. Asllani, R. Lambiotte, and T. Carletti, Structure and dynamical behavior of non-normal networks, Science Advances 4 (2018).
  32. R. MacKay, S. Johnson, and B. Sansom, How directed is a directed network?, Royal Society Open Science 7 (2020).
  33. N. Rodgers, P. Tiňo, and S. Johnson, Strong connectivity in real directed networks, Proceedings of the National Academy of Sciences of the United States of America 120 (2023).
  34. L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behaviour of Non-Normal Matrices and Operators (Princeton University Press, 2005).
  35. N. Masuda, M. Porter, and R. Lambiotte, Random walks and diffusion on networks, Physics Reports 716-717, 1 (2017).
  36. C. Godrèche and J. Luck, Characterising the nonequilibrium stationary states of Ornstein–Uhlenbeck processes, Journal of Physics A: Mathematical and Theoretical 52 (2018).
  37. H. Nishimori, Statistical physics of spin glasses and information processing: an introduction (Clarendon Press, 2001).
  38. P. Erdös and A. Rényi, On random graphs I, Publicationes Mathematicae Debrecen 6, 290 (1959).
  39. R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications (Springer, 2017).
  40. P. Kale, A. Zalesky, and L. Gollo, Estimating the impact of structural directionality: How reliable are undirected connectomes?, Network Neuroscience 2, 259 (2018).
  41. We consider the (ir)reciprocity of weighted networks as defined in Ref. [68]. Alternative definitions of reciprocity for unweighted graphs are given in Ref. [67, 7].
  42. D. Garlaschelli and M. I. Loffredo, Patterns of link reciprocity in directed networks, Physical Review Letters 93 (2004).
  43. C. Voisin, Hodge Theory and Complex Algebraic Geometry (Cambridge University Press, 2010).
  44. Equivalently, the ‘SpringRank’ formulation considers directed springs between nodes and aims to find a ranking that minimizes the total energy of these springs [181].
  45. G. Hennequin, T. P. Vogels, and W. Gerstner, Non-normal amplification in random balanced neuronal networks, Physical Review E 86 (2012).
  46. G. Lindmark and C. Altafini, Centrality measures and the role of non-normality for network control energy reduction, IEEE Control Systems Letters 5, 1013 (2021).
  47. R. Lambiotte, Continuous-time random walks and temporal networks, in Temporal Network Theory (Springer, 2023) pp. 225–239.
  48. A. Schwarze and M. Porter, Motifs for processes on networks, SIAM Journal on Applied Dynamical Systems 20 (2021).
  49. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Physical Review Letters 95 (2005).
  50. F. Nielsen, On the Jensen–Shannon symmetrization of distances relying on abstract means, Entropy 21 (2019).
  51. A. Dechant, Minimum entropy production, detailed balance and Wasserstein distance for continuous-time markov processes, Journal of Physics A: Mathematical and Theoretical 55 (2022).
  52. G. Uhlenbeck and L. Ornstein, On the theory of the Brownian motion, Physical Review 36 (1930).
  53. J. Zabczyk, Mathematical Control Theory: An Introduction (Springer, 2020).
  54. M. Lax, Fluctuations from the nonequilibrium steady state, Reviews of Modern Physics 32 (1960).
  55. V. Simoncini, Computational methods for linear matrix equations, SIAM Review 58 (2016).
  56. H. Huang and Y. Kabashima, Dynamics of asymmetric kinetic Ising systems revisited, Journal of Statistical Mechanics: Theory and Experiment  (2014).
  57. M. Aguilera, S. A. Moosavi, and H. Shimazaki, A unifying framework for mean-field theories of asymmetric kinetic Ising systems, Nature Communications 58 (2021).
  58. M. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999).
  59. M. Esposito, Stochastic thermodynamics under coarse graining, Physical Review E 85 (2012).
  60. E. Roldán and J. M. R. Parrondo, Estimating dissipation from single stationary trajectories, Physical Review Letters 105 (2010).
  61. T. Martynec, S. H. L. Klapp1, and S. A. M. Loos, Entropy production at criticality in a nonequilibrium Potts model, New Journal of Physics 22 (2020).
  62. G. Bianconi, N. Gulbahce, and A. E. Motter, Local structure of directed networks, Physical Review Letters 100 (2008).
  63. S. Johnson and N. S. Jones, Looplessness in networks is linked to trophic coherence, Proceedings of the National Academy of Sciences of the United States of America 114, 5618 (2017).
  64. A. Seif, M. Hafezi, and C. Jarzynski, Machine learning the thermodynamic arrow of time, Nature Physics 17, 105 (2021).
  65. W. Gilpin, Generative learning for nonlinear dynamics, Nature Reviews Physics  (2024).
  66. A. Frishman and P. Ronceray, Learning force fields from stochastic trajectories, Physical Review X 10 (2020).
  67. M. Timme and J. Casadiego, Revealing networks from dynamics: an introduction, Journal of Physics A: Mathematical and Theoretical 47 (2014).
  68. C. Zou and J. Feng, Granger causality vs. dynamic Bayesian network inference: a comparative study, BMC Bioinformatics 10 (2009).
  69. L. Harrison, W. Penny, and K. Friston, Multivariate autoregressive modeling of fMRI time series, NeuroImage 19, 1477 (2003).
  70. M. Gilson, E. Tagliazucchi, and R. Cofré, Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain, Physical Review E 107 (2023).
  71. P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1992).
  72. D. Chen and R. Plemmons, Nonnegativity constraints in numerical analysis, in The Birth of Numerical Analysis (World Scientific, 2009) pp. 109–139.
  73. G. Deco, D. Vidaurre, and M. L. Kringelbach, Revisiting the global workspace orchestrating the hierarchical organization of the human brain, Nature Human Behaviour 5, 497 (2021).
  74. S. Dehaene, M. Kerszberg, and J.-P. Changeux, A neuronal model of a global workspace in effortful cognitive tasks, Proceedings of the National Academy of Sciences of the United States of America 95, 14529 (1998).
  75. S. Sieniutycz and P. Salamon, Finite-time thermodynamics and thermoeconomics (Taylor & Francis, 1990).
  76. V. N. Pokrovskii, Thermodynamics of Complex Systems: Principles and applications (IOP Publishing, 2020).
  77. N.-F. Chen, R. Roll, and S. A. Ross, Economic forces and the stock market, The Journal of Business 59, 383 (1986).
  78. P. Moretti and M. A. Muñoz, Griffiths phases and the stretching of criticality in brain networks, Nature Communications 4 (2013).
  79. D. J. de Solla Price, Networks of scientific papers, Science 149, 510 (1965).
  80. D. J. de Solla Price, A general theory of bibliometric and other cumulative advantage processes, Journal of the American Society for Information Science , 292 (1976).
  81. A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
  82. S. Lamrous and M. Taileb, Divisive hierarchical k𝑘kitalic_k-means, IEEE International Conference on Computational Inteligence for Modelling Control and Automation  (2006).
  83. H. J. Kappen and J. J. Spanjers, Mean field theory for asymmetric neural networks, Physical Review E 61 (2000).
  84. T. Tanaka, Information geometry of mean-field approximation, in Advanced mean field methods: Theory and practice (MIT Press, 2001) pp. 351–360.
  85. S. Amari, S. Ikeda, and H. Shimokawa, Information geometry of alpha-projection in mean field approximation, in Advanced mean field methods: Theory and practice (MIT Press, 2001) pp. 241–257.
  86. R. Thompson and C. Townsend, Impacts on stream food webs of native and exotic forest: an intercontinental comparison, Ecology 84, 145 (2003).
  87. J. Klaise and S. Johnson, The origin of motif families in food webs, Scientific Reports 7 (2017).
  88. R. M. Thompson and C. R. Townsend, Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams, OIKOS 108, 137 (2004).
  89. J. Bascompte, C. J. Melián, and E. Sala, Interaction strength combinations and the overfishing of a marine food web, Proceedings of the National Academy of Sciences of the United States of America 102, 5443 (2005).
  90. R. E. Ulanowicz and D. Baird, Nutrient controls on ecosystem dynamics: the chesapeake mesohaline community, Journal of Marine Systems 19, 159 (1999).
  91. B. J. Cole, Dominance hierarchies in leptothorax ants, Science 212, 83 (1981).
  92. T. Grant, Dominance and association among members of a captive and a free-ranging group of grey kangaroos (macropus giganteus), Animal Behaviour 21, 449 (1973).
  93. R. R. Christian and J. J. Luczkovich, Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels, Ecological Modelling 117, 99 (1999).
  94. L. Goldwasser and J. Roughgarden, Construction and analysis of a large Caribbean food web, Ecology 74, 1216 (1993).
  95. M. Huxham, S. Beaney, and D. Raffaelli, Do parasites reduce the chances of triangulation in a real food web?, OIKOS 76, 284 (1996).
  96. K. Havens, Scale and structure in natural food webs, Science 257, 1107 (1992).
  97. N. D. Martinez, Artifacts or attributes? Effects of resolution on the Little Rock Lake food web, Ecological Monographs 61, 367 (1991).
  98. S. Johnson, Network data repository from various sources.
  99. J. Link, Does food web theory work for marine ecosystems?, Marine Ecology Progress Series 230, 1 (2002).
  100. P. H. Warren, Spatial and temporal variation in the structure of a freshwater food web, OIKOS 55, 299 (1989).
  101. P. Yodzis, Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem, Journal of Animal Ecology 67, 635 (1998).
  102. R. Ulanowicz and D. L. DeAngelis, Network analysis of trophic dynamics in South Florida ecosystems, in U.S. Geological Survey Programon the South Florida Ecosystem; Proceedings of South Florida Restoration ScienceForum (BiblioGov, 1999).
  103. T. H. Clutton-Brock, P. J. Greenwood, and R. P. Powell, Ranks and relationships in highland ponies and highland cows, Zeitschrift für Tierpsychologie 41, 202 (1976).
  104. M. W. Schein and M. H. Fohrman, Social dominance relationships in a herd of dairy cattle, The British Journal of Animal Behaviour 3, 45 (1955).
  105. C. C. Hass, Social status in female bighorn sheep (Ovis canadensis): expression, development and reproductive correlates, Journal of Zoology 225, 509 (1991).
  106. D. F. Lott, Dominance relations and breeding rate in mature male American bison, Zeitschrift für Tierpsychologie 49, 418 (1979).
  107. F. F. Strayer and M. S. Cummins, Dominance Relations: An Ethological View of Human Conflict and Social Interaction (Livingstone, 1980).
  108. G. A. Polis, Complex trophic interactions in deserts: An empirical critique of food-web theory, The American Naturalist 138, 123 (1991).
  109. S. Opitz, Trophic interactions in Caribbean coral reefs, International Center for Living Aquatic Resources Management  (1996).
  110. L. A. Adamic and N. Glance, The political blogosphere and the 2004 U.S. election: divided they blog, LinkKDD ’05: Proceedings of the 3rd international workshop on Link discovery , 36 (2005).
  111. A. Clauset, E. Tucker, and M. Sainz, The Colorado index of complex networks,   (2016).
  112. J. Duncan MacRae, Direct factor analysis of sociometric data, Sociometry 23, 360 (1960).
  113. E. Galán-Vásquez, B. Luna, and A. Martínez-Antonio, The regulatory network of Pseudomonas aeruginosa, Microbial Informatics and Experimentation 1 (2011).
  114. L. Harriger, M. P. van den Heuvel, and O. Sporns, Rich club organization of macaque cerebral cortex and its role in network communication, PLOS One 7 (2012).
  115. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440 (1998).
  116. M. A. de Reus and M. P. van den Heuvel, Rich club organization and intermodule communication in the cat connectome, Journal of Neuroscience 33, 12929 (2013).
  117. M. Bota and L. W. Swanson, Online workbenches for neural network connections, Journal of Comparative Neurology 500, 807 (2006).
  118. E. Garfield, Index of citation networks produced by analyses from the software HistCite.
  119. W. D. Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis with Pajek (Cambridge University Press, 2018).
  120. M. J. Williams and M. Musolesi, Spatio-temporal networks: reachability, centrality and robustness, Royal Society Open Science 3 (2016).
  121. C. D. Bacco, D. B. Larremore, and C. Moore, A physical model for efficient ranking in networks, Science Advances 4 (2018).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 posts and received 39 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube