Brick Wall Quantum Circuits with Global Fermionic Symmetry (2402.18440v5)
Abstract: We study brick wall quantum circuits enjoying a global fermionic symmetry. The constituent 2-qubit gate, and its fermionic symmetry, derive from a 2-particle scattering matrix in integrable, supersymmetric quantum field theory in 1+1 dimensions. Our 2-qubit gate, as a function of three free parameters, is of so-called free fermionic or matchgate form, allowing us to derive the spectral structure of both the brick wall unitary $U_F$ and its, non-trivial, hamiltonian limit $H_{\gamma}$ in closed form. We find that the fermionic symmetry pins $H_{\gamma}$ to a surface of critical points, whereas breaking that symmetry leads to non-trivial topological phases. We briefly explore quench dynamics for this class of circuits.
- “The Computational Complexity of Linear Optics” In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing Association for Computing Machinery, 2011 DOI: 10.1145/1993636.1993682
- “Improved simulation of stabilizer circuits” In Phys. Rev. A 70 American Physical Society, 2004 DOI: 10.1103/PhysRevA.70.052328
- “S-matrix of the Yang-Lee edge singularity in two dimensions” In Physics Letters B 225.3, 1989 DOI: https://doi.org/10.1016/0370-2693(89)90818-6
- “A New Solution of the Supersymmetric TJ Model by Means of the Quantum Inverse Scattering Method” arXiv, 1992
- B.U. Felderhof “Diagonalization of the transfer matrix of the free-fermion model. II” In Physica 66.2, 1973, pp. 279–297 DOI: https://doi.org/10.1016/0031-8914(73)90330-3
- B.U. Felderhof “Diagonalization of the transfer matrix of the free-fermion model. III” In Physica 66.3, 1973 DOI: https://doi.org/10.1016/0031-8914(73)90298-X
- B.U. Felderhof “Direct diagonalization of the transfer matrix of the zero-field free-fermion model” In Physica 65.3, 1973 DOI: https://doi.org/10.1016/0031-8914(73)90059-1
- D. Gottesman “The Heisenberg representation of quantum computers”, 1998 URL: https://www.osti.gov/biblio/319738
- “Integrable Floquet Dynamics” In SciPost Phys. 2, 2017 DOI: 10.21468/SciPostPhys.2.3.021
- “Matchgates and classical simulation of quantum circuits” In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464.2100, 2008, pp. 3089–3106 DOI: 10.1098/rspa.2008.0189
- A.Y. Kitaev “Unpaired Majorana fermions in quantum wires” In Physics-Uspekhi 44.10S, 2001 DOI: 10.1070/1063-7869/44/10S/S29
- “Topological properties of the dimerized Kitaev chain with long-range couplings” In Results in Physics 30, 2021 DOI: https://doi.org/10.1016/j.rinp.2021.104837
- “Zero modes of the Kitaev chain with phase-gradients and longer range couplings” In Journal of Physics Communications 2.4 IOP Publishing, 2018 DOI: 10.1088/2399-6528/aab7e5
- “Conserved charges in the quantum simulation of integrable spin chains” In Journal of Physics A: Mathematical and Theoretical 56, 2023 DOI: 10.1088/1751-8121/acc369
- Y. Miao, V. Gritsev and D.V. Kurlov “The Floquet Baxterisation” arXiv, 2022 DOI: 10.48550/arXiv.2206.15142
- “Reflection matrices for integrable N = 1 supersymmetric theories” In Nuclear Physics B 487.3, 1997, pp. 756–778 DOI: https://doi.org/10.1016/S0550-3213(96)00632-3
- “Thermodynamic Bethe Ansatz for N = 1 supersymmetric theories” In Nuclear Physics B 464.3, 1996 DOI: https://doi.org/10.1016/0550-3213(95)00649-4
- K. Schoutens “Supersymmetry and factorizable scattering” In Nuclear Physics B 344.3, 1990 DOI: 10.1016/0550-3213
- N. Slavnov “Algebraic Bethe Ansatz and Correlation Functions” World Scientific, 2022
- “Classical simulation of noninteracting-fermion quantum circuits” In Phys. Rev. A 65 American Physical Society, 2002 DOI: 10.1103/PhysRevA.65.032325
- “Topological Invariants for Spin-Orbit Coupled Superconductor Nanowires” In Phys. Rev. Lett. 109 American Physical Society, 2012 DOI: 10.1103/PhysRevLett.109.150408
- L.G. Valiant “Quantum Circuits That Can Be Simulated Classically in Polynomial Time” In SIAM Journal on Computing 31.4, 2002 DOI: 10.1137/S0097539700377025
- M. Van den Nest “Universal Quantum Computation with Little Entanglement” In Phys. Rev. Lett. 110 American Physical Society, 2013 DOI: 10.1103/PhysRevLett.110.060504
- M. Vanicat, L. Zadnik and T. Prosen “Integrable Trotterization: Local Conservation Laws and Boundary Driving” In Phys. Rev. Lett. 121, 2018 DOI: 10.1103/PhysRevLett.121.030606
- “Integrable Digital Quantum Simulation: Generalized Gibbs Ensembles and Trotter Transitions” In Phys. Rev. Lett. 130 American Physical Society, 2023 DOI: 10.1103/PhysRevLett.130.260401
- G. Vidal “Efficient Classical Simulation of Slightly Entangled Quantum Computations” In Phys. Rev. Lett. 91 American Physical Society, 2003 DOI: 10.1103/PhysRevLett.91.147902
- “Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor” In Phys. Rev. B 90 American Physical Society, 2014 DOI: 10.1103/PhysRevB.90.014505
- J. Wouters, H. Katsura and D. Schuricht “Exact ground states for interacting Kitaev chains” In Physical Review B 98.15 American Physical Society (APS), 2018 DOI: 10.1103/physrevb.98.155119
- A.B. Zamolodchikov “Integrals of motion and S-matrix of the (scaled) T=Tc Ising model with magnetic field” In International Journal of Modern Physics A 4.16, 1989
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.