Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Better than best low-rank approximation with the singular value decomposition (2402.18427v1)

Published 28 Feb 2024 in math.NA and cs.NA

Abstract: The Eckhart-Young theorem states that the best low-rank approximation of a matrix can be constructed from the leading singular values and vectors of the matrix. Here, we illustrate that the practical implications of this result crucially depend on the organization of the matrix data. In particular, we will show examples where a rank 2 approximation of the matrix data in a different representation more accurately represents the entire matrix than a rank 5 approximation of the original matrix data -- even though both approximations have the same number of underlying parameters. Beyond images, we show examples of how flexible orientation enables better approximation of time series data, which suggests additional applicability of the findings. Finally, we conclude with a theoretical result that the effect of data organization can result in an unbounded improvement to the matrix approximation factor as the matrix dimension grows.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com