Combining quantum processors with real-time classical communication (2402.17833v2)
Abstract: Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time, and is limited to a few quantum bits, i.e., qubits, typically arranged in a planar connectivity. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). Here we overcome these limitations with error mitigated dynamic circuits and circuit-cutting to create quantum states requiring a periodic connectivity employing up to 142 qubits spanning multiple QPUs connected in real-time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, i.e., within a fraction of the coherence time of the qubits. Our real-time classical link allows us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU which enables a modular scaling of quantum hardware. Furthermore, the error mitigated control-flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Dynamic circuits and quantum modularity are thus key to scale quantum computers and make them useful.
- H. F. Hofmann, How to simulate a universal quantum computer using negative probabilities, Journal of Physics A: Mathematical and Theoretical 42, 275304 (2009).
- C. Piveteau and D. Sutter, Circuit knitting with classical communication, IEEE Transactions on Information Theory , 1 (2023).
- D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
- K. Mitarai and K. Fujii, Constructing a virtual two-qubit gate by sampling single-qubit operations, New Journal of Physics 23, 023021 (2021).
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
- L. Brenner, C. Piveteau, and D. Sutter, Optimal wire cutting with classical communication (2023), arXiv:2302.03366 [quant-ph] .
- E. Pednault, An alternative approach to optimal wire cutting without ancilla qubits (2023), arXiv:2303.08287 [quant-ph] .
- G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59, 141 (1999).
- D. Kraft, A software package for sequential quadratic programming (Wiss. Berichtswesen d. DFVLR, 1988).
- H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86, 910 (2001).
- M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A 69, 062311 (2004).
- R. Zander and C. K.-U. Becker, Benchmarking multipartite entanglement generation with graph states (2024), arXiv:2402.00766 [quant-ph] .
- L. Schmitt, C. Piveteau, and D. Sutter, Cutting circuits with multiple two-qubit unitaries (2023), arXiv:2312.11638 [quant-ph] .
- B. Jungnitsch, T. Moroder, and O. Gühne, Entanglement witnesses for graph states: General theory and examples, Phys. Rev. A 84, 032310 (2011).
- G. Tóth and O. Gühne, Entanglement detection in the stabilizer formalism, Phys. Rev. A 72, 022340 (2005).
- E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.