Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spectral Gap Superposition States (2402.17668v1)

Published 27 Feb 2024 in quant-ph

Abstract: This work introduces a novel NISQ-friendly procedure for estimating spectral gaps in quantum systems. By leveraging Adiabatic Thermalization, we are able to create the Spectral Gap Superposition state, a newly defined quantum state exhibiting observable fluctuations in time that allow for the accurate estimation of any energy gap. Our method is tested by estimating the energy gap between the ground and the first excited state for the 1D and 2D Ising model, the Hydrogen molecule H2 and Helium molecule He2. Despite limiting our circuit design to have at most 40 Trotter steps, our numerical experiments of both noiseless and noisy devices for the presented systems give relative errors in the order of $10{-2}$ and $10{-1}$. Further experiments on the IonQ Aria device lead to spectral gap estimations with a relative error of $10{-2}$ for a 4-site Ising chain, demonstrating the validity of the procedure for NISQ devices and charting a path towards a new way of calculating energy gaps.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations, Physical review letters 94, 170201 (2005).
  2. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  3. M. Born and V. Fock, Beweis des adiabatensatzes, Zeitschrift für Physik 51, 165 (1928).
  4. S. Jansen, M.-B. Ruskai, and R. Seiler, Bounds for the adiabatic approximation with applications to quantum computation, Journal of Mathematical Physics 48, 102111 (2007).
  5. H. F. Trotter, On the product of semi-groups of operators, Proceedings of the American Mathematical Society 10, 545 (1959).
  6. K. Huang, Statistical mechanics (John Wiley & Sons, 2008).
  7. G. Rendon, J. Watkins, and N. Wiebe, Improved Accuracy for Trotter Simulations Using Chebyshev Interpolation, Quantum 8, 1266 (2024).
  8. R. Shankar, Quantum field theory and condensed matter: An introduction (Cambridge University Press, 2017).
  9. K. Gnatenko, H. Laba, and V. Tkachuk, Energy levels estimation on a quantum computer by evolution of a physical quantity, Physics Letters A 424, 127843 (2022).
  10. P. L. Chebyshev, Théorie des mécanismes connus sous le nom de parallélogrammes (Imprimerie de l’Académie impériale des sciences, 1853).
  11. A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Physical review letters 82, 1971 (1999).
  12. IonQ, Ionq aria: practical performance (2024).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.