Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

IKLink: End-Effector Trajectory Tracking with Minimal Reconfigurations (2402.16154v2)

Published 25 Feb 2024 in cs.RO

Abstract: Many applications require a robot to accurately track reference end-effector trajectories. Certain trajectories may not be tracked as single, continuous paths due to the robot's kinematic constraints or obstacles elsewhere in the environment. In this situation, it becomes necessary to divide the trajectory into shorter segments. Each such division introduces a reconfiguration, in which the robot deviates from the reference trajectory, repositions itself in configuration space, and then resumes task execution. The occurrence of reconfigurations should be minimized because they increase the time and energy usage. In this paper, we present IKLink, a method for finding joint motions to track reference end-effector trajectories while executing minimal reconfigurations. Our graph-based method generates a diverse set of Inverse Kinematics (IK) solutions for every waypoint on the reference trajectory and utilizes a dynamic programming algorithm to find the globally optimal motion by linking the IK solutions. We demonstrate the effectiveness of IKLink through a simulation experiment and an illustrative demonstration using a physical robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. Dogra, S. Rani, S. Verma, S. Garg, and M. M. Hassan, “Torm: tunicate swarm algorithm-based optimized routing mechanism in iot-based framework,” Mobile Networks and Applications, pp. 1–9, 2021.
  2. R. M. Holladay and S. S. Srinivasa, “Distance metrics and algorithms for task space path optimization,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2016, pp. 5533–5540.
  3. D. Rakita, B. Mutlu, and M. Gleicher, “Stampede: A discrete-optimization method for solving pathwise-inverse kinematics,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3507–3513.
  4. T. Yang, J. V. Miro, Y. Wang, and R. Xiong, “Optimal task-space tracking with minimum manipulator reconfiguration,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5079–5086, 2022.
  5. M. Cefalo, G. Oriolo, and M. Vendittelli, “Task-constrained motion planning with moving obstacles,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2013, pp. 5758–5763.
  6. B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” Journal of intelligent and robotic systems, vol. 3, pp. 201–212, 1990.
  7. P. Praveena, D. Rakita, B. Mutlu, and M. Gleicher, “User-guided offline synthesis of robot arm motion from 6-dof paths,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8825–8831.
  8. M. Yoon, M. Kang, D. Park, and S.-E. Yoon, “Learning-based initialization of trajectory optimization for path-following problems of redundant manipulators,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9686–9692.
  9. R. Holladay, O. Salzman, and S. Srinivasa, “Minimizing task-space frechet error via efficient incremental graph search,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1999–2006, 2019.
  10. M. Cefalo, G. Oriolo, and M. Vendittelli, “Planning safe cyclic motions under repetitive task constraints,” in 2013 IEEE international conference on robotics and automation.   IEEE, 2013, pp. 3807–3812.
  11. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization and convex collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
  12. S. Alatartsev and F. Ortmeier, “Improving the sequence of robotic tasks with freedom of execution,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 4503–4510.
  13. ROS-I. (2015) Descartes—a ros-industrial project for performing path-planning on under-defined cartesian trajectories. [Online]. Available: http://wiki.ros.org/descartes
  14. S. Niyaz, A. Kuntz, O. Salzman, R. Alterovitz, and S. Srinivasa, “Following surgical trajectories with concentric tube robots via nearest-neighbor graphs,” in Proceedings of the 2018 International Symposium on Experimental Robotics.   Springer, 2020, pp. 3–13.
  15. G. Oriolo, M. Ottavi, and M. Vendittelli, “Probabilistic motion planning for redundant robots along given end-effector paths,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2.   IEEE, 2002, pp. 1657–1662.
  16. R. K. Malhan, S. Thakar, A. M. Kabir, P. Rajendran, P. M. Bhatt, and S. K. Gupta, “Generation of configuration space trajectories over semi-constrained cartesian paths for robotic manipulators,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 193–205, 2022.
  17. T. Yang, J. V. Miro, Q. Lai, Y. Wang, and R. Xiong, “Cellular decomposition for nonrepetitive coverage task with minimum discontinuities,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1698–1708, 2020.
  18. T. Yang, J. V. Miro, Y. Wang, and R. Xiong, “Non-revisiting coverage task with minimal discontinuities for non-redundant manipulators,” in 16th Conference on Robotics-Science and Systems.   MIT PRESS, 2020.
  19. P. Beeson and B. Ames, “Trac-ik: An open-source library for improved solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).   IEEE, 2015, pp. 928–935.
  20. D. Rakita, B. Mutlu, and M. Gleicher, “Relaxedik: Real-time synthesis of accurate and feasible robot arm motion.” in Robotics: Science and Systems, vol. 14.   Pittsburgh, PA, 2018, pp. 26–30.
  21. L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.
  22. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231.
  23. Y. Wang, P. Praveena, D. Rakita, and M. Gleicher, “Rangedik: An optimization-based robot motion generation method for ranged-goal tasks,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 8090–8096.
  24. M.-J. Kim, M.-S. Kim, and S. Y. Shin, “A general construction scheme for unit quaternion curves with simple high order derivatives,” in Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 1995, pp. 369–376.
  25. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.
  26. B. Ames, J. Morgan, and G. Konidaris, “Ikflow: Generating diverse inverse kinematics solutions,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7177–7184, 2022.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.