Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal Control of Unbounded Functional Stochastic Evolution Systems in Hilbert Spaces: Second-Order Path-dependent HJB Equation (2402.15998v1)

Published 25 Feb 2024 in math.OC and math.PR

Abstract: Optimal control and the associated second-order path-dependent Hamilton-Jacobi-BeLLMan (PHJB) equation are studied for unbounded functional stochastic evolution systems in Hilbert spaces. The notion of viscosity solution without B-continuity is introduced in the sense of Crandall and Lions, and is shown to coincide with the classical solutions and to satisfy a stability property. The value functional is proved to be the unique continuous viscosity solution to the associated PHJB equation, without assuming any B-continuity on the coefficients. In particular, in the Markovian case, our result provides a new theory of viscosity solutions to the Hamilton-Jacobi-BeLLMan equation for optimal control of stochastic evolutionary equations -- driven by a linear unbounded operator -- in a Hilbert space, and removes the B-continuity assumption on the coefficients, which was initially introduced for first-order equations by Crandall and Lions (see J. Func. Anal. 90 (1990), 237-283; 97 (1991), 417-465), and was subsequently used by Swiech (Comm. Partial Differential Equations 19 (1994), 1999-2036) and Fabbri, Gozzi, and Swiech (Probability Theory and Stochastic Modelling 82, 2017, Springer, Berlin).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com