Gauging the scale invariance of Einstein equations: Weyl invariant equations for gravity (2402.15675v5)
Abstract: We derive a Weyl invariant equation for Gravity by gauging the global Weyl invariance of vacuum Einstein equations. The equation is linear in the curvature and a natural generalization of Einstein equations to Weyl geometry. The system has 5 physical polarizations, two tensor modes, two vectors modes and one scalar, associated to the cosmological constant. An exact black hole solution is found. We study the dynamics on Friedman backgrounds and the evolution of cosmological perturbations. It is shown that cosmological vector modes do not decay in this model.
- H. Weyl, “Gravitation and electricity”, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1918 (1918) 465.
- J. Ehlers, F. A. E. Pirani, and A. Schild, “Republication of: The geometry of free fall and light propagation”, General Relativity and Gravitation 44 JUN (2012) 1587–1609.
- C. Romero, J. B. Fonseca-Neto, and M. L. Pucheu, “General relativity and Weyl geometry”, Classical and Quantum Gravity 29 (2012), no. 15, 155015.
- C. Romero, “Russell on Weyl’s unified field theory”, arXiv:2208.08495.
- E. Scholz, “Paving the Way for Transitions—A Case for Weyl Geometry”, Einstein Stud. 13 (2017) 171–223, arXiv:1206.1559.
- I. Lobo and C. Romero, “Experimental constraints on the second clock effect”, Physics Letters B 783 (2018) 306–310.
- M. Hobson and A. Lasenby, “Note on the absence of the second clock effect in Weyl gauge theories of gravity”, Physical Review D 105 (2022), no. 2,.
- I. Quiros, “Gauge invariant approach to nonmetricity theories and the second clock effect”, arXiv:2201.03076.
- C. Barceló, R. Carballo-Rubio, and L. J. Garay, “Weyl relativity: A novel approach to Weyl’s ideas”, JCAP 06 (2017) 014, arXiv:1703.06355.
- V. A. Berezin and V. I. Dokuchaev, “Weyl cosmology”, Int. J. Mod. Phys. A 37 (2022), no. 20n21, 2243005, arXiv:2203.04257.
- Z. Haghani and T. Harko, “Compact stellar structures in Weyl geometric gravity”, Phys. Rev. D 107 (2023), no. 6, 064068, arXiv:2303.10339.
- E. Scholz, “The unexpected resurgence of Weyl geometry in late 20-th century physics”, arXiv:1703.03187.
- S. Deser, “Scale invariance and gravitational coupling”, Annals of Physics 59 (1970), no. 1, 248–253.
- I. Bars, P. Steinhardt, and N. Turok, “Local conformal symmetry in physics and cosmology”, Physical Review D 89 (2014), no. 4,.
- P. G. Ferreira, C. T. Hill, and G. G. Ross, “Weyl Current, Scale-Invariant Inflation and Planck Scale Generation”, Phys. Rev. D 95 (2017), no. 4, 043507, arXiv:1610.09243.
- M. Shimon, “Locally scale-invariant gravity”, arXiv:2108.11788.
- N. J. Hitchin, “Complex manifolds and Einstein’s equations”, Lect. Notes Math. 970 (1982) 73–99.
- K. P. Tod, “Local heterotic geometry and self-dual Einstein-Weyl spaces”, Classical and Quantum Gravity 13 oct (1996) 2609.
- D. Calderbank and H. Pedersen, “Einstein-Weyl geometry”, Journal of Differential Geometry, 1999, no. 6, 387–423.
- G. Bonneau, “Cohomogeneity one Einstein-Weyl structures: A Local approach”, J. Geom. Phys. 39 (2001) 135–173, gr-qc/9912067.
- G. Bonneau, “Compact Einstein-Weyl four-dimensional manifolds”, Class. Quant. Grav. 16 (1999) 1057–1068, gr-qc/9806037.
- G. Bonneau, “Einstein-Weyl structures and Bianchi metrics”, Class. Quant. Grav. 15 (1998) 2415–2425, gr-qc/9803009.
- G. Bonneau, “Einstein-Weyl structures corresponding to diagonal Kahler Bianchi IX metrics”, Class. Quant. Grav. 14 (1997) 2123–2135, hep-th/9612055.
- P. Tod, “Conformal methods in general relativity with application to conformal cyclic cosmology: A minicourse given at the IXth IMLG Warsaw 2018”, arXiv:2102.02701.
- S. Klemm and L. Ravera, “An action principle for the Einstein-Weyl equations”, Journal of Geometry and Physics 158 (2020) 103958.
- A. Ozdeger, “Generalized Einstein tensor for a Weyl manifold and its applications”, Acta Mathematica Sinica-English Series 29 FEB (2013) 373–382.
- W. Straub, “The Bianchi identities in Weyl space”, viXra:1508.0046.
- L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant”, Nucl. Phys. B195 (1982) 76.
- D. Baumann, “Cosmology”, Cambridge University Press, 2022.
- M. Bañados, “In preparation”, 2024.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.