Energy Extraction via Magnetic Reconnection in Konoplya-Rezzolla-Zhidenko Parametrized Black Holes (2402.15050v2)
Abstract: Recently, Comisso and Asenjo proposed a novel mechanism for harnessing energy from black holes through magnetic reconnection. Our study focuses on exploring the utilization of this mechanism on Konoplya-Rezzolla-Zhidenko (KRZ) parametrized black holes to assess the impact of deformation parameters on energy extraction. Among the various parameters, ${\delta_1, \delta_2}$ are identified as the most important factors affecting the physics under consideration. The influence of these two parameters on the ergoregion, circular geodesics in the equatorial plane, and energy extraction from the KRZ black holes through magnetic reconnection is carefully analyzed. Results indicate that deviations from the Kerr metric have a notable influence on the energy extraction process. Particularly, energy extraction is enhanced with more negative ${\delta_1}$ or more positive ${\delta_2}$ within the range constrained by current astronomical observations, resulting in significantly higher maximum power and efficiency compared to the Kerr model. Moreover, when ${\delta_2}$ is sufficiently negative, extracting energy through this mechanism becomes increasingly challenging, necessitating an exceptionally high black hole spin.
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence,” Phys. Rev. Lett. 116 no. 24, (2016) 241103, arXiv:1606.04855 [gr-qc].
- LIGO Scientific, VIRGO Collaboration, B. P. Abbott et al., “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2” Phys. Rev. Lett. 118 no. 22, (2017) 221101, arXiv:1706.01812 [gr-qc]. [Erratum: Phys.Rev.Lett. 121, 129901 (2018)].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence,” Phys. Rev. Lett. 119 no. 14, (2017) 141101, arXiv:1709.09660 [gr-qc].
- LIGO Scientific, Virgo Collaboration, R. Abbott et al., “GW190521: A Binary Black Hole Merger with a Total Mass of 150M⊙150subscript𝑀direct-product150M_{\odot}150 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT,” Phys. Rev. Lett. 125 no. 10, (2020) 101102, arXiv:2009.01075 [gr-qc].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” Astrophys. J. Lett. 875 (2019) L1, arXiv:1906.11238 [astro-ph.GA].
- D. Christodoulou, “Reversible and irreversible transforations in black hole physics,” Phys. Rev. Lett. 25 (1970) 1596–1597.
- R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1 (1969) 252–276.
- J. M. Bardeen, W. H. Press, and S. A. Teukolsky, “Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation,” Astrophys. J. 178 (1972) 347.
- R. M. Wald, “Energy Limits on the Penrose Process,” Astrophys. J. 191 (1974) 231.
- S. A. Teukolsky and W. H. Press, “Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation,” Astrophys. J. 193 (1974) 443–461.
- T. Piran, J. Shaham, and J. Katz, “High efficiency of the penrose mechanism for particle collisions,” Astrophys. J. Lett. 196 (1975) L107.
- R. D. Blandford and R. L. Znajek, “Electromagnetic extractions of energy from Kerr black holes,” Mon. Not. Roy. Astron. Soc. 179 (1977) 433–456.
- M. Takahashi, S. Nitta, Y. Tatematsu, and A. Tomimatsu, “Magnetohydrodynamic Flows in Kerr Geometry: Energy Extraction from Black Holes,” Astrophys. J. 363 (Nov., 1990) 206.
- H. K. Lee, R. A. M. J. Wijers, and G. E. Brown, “The Blandford-Znajek process as a central engine for a gamma-ray burst,” Phys. Rept. 325 (2000) 83–114, arXiv:astro-ph/9906213.
- A. Tchekhovskoy, J. C. McKinney, and R. Narayan, “Simulations of Ultrarelativistic Magnetodynamic Jets from Gamma-ray Burst Engines,” Mon. Not. Roy. Astron. Soc. 388 (2008) 551, arXiv:0803.3807 [astro-ph].
- S. S. Komissarov and M. V. Barkov, “Activation of the Blandford-Znajek mechanism in collapsing stars,” Mon. Not. Roy. Astron. Soc. 397 (2009) 1153, arXiv:0902.2881 [astro-ph.HE].
- J. C. McKinney and C. F. Gammie, “A Measurement of the electromagnetic luminosity of a Kerr black hole,” Astrophys. J. 611 (2004) 977–995, arXiv:astro-ph/0404512.
- J. F. Hawley and J. H. Krolik, “Magnetically driven jets in the kerr metric,” Astrophys. J. 641 (2006) 103–116, arXiv:astro-ph/0512227.
- S. S. Komissarov and J. C. McKinney, “Meissner effect and Blandford-Znajek mechanism in conductive black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 377 (2007) L49–L53, arXiv:astro-ph/0702269.
- A. Tchekhovskoy, R. Narayan, and J. C. McKinney, “Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole,” Mon. Not. Roy. Astron. Soc. 418 (2011) L79–L83, arXiv:1108.0412 [astro-ph.HE].
- S. Koide and K. Arai, “Energy extraction from a rotating black hole by magnetic reconnection in ergosphere,” Astrophys. J. 682 (2008) 1124, arxiv:0805.0044 [astro-ph].
- L. Comisso and F. A. Asenjo, “Magnetic reconnection as a mechanism for energy extraction from rotating black holes,” Phys. Rev. D 103 no. 2, (2021) 023014, arxiv:2012.00879 [astro-ph.HE].
- K. Parfrey, A. Philippov, and B. Cerutti, “First-Principles Plasma Simulations of Black-Hole Jet Launching,” Phys. Rev. Lett. 122 no. 3, (2019) 035101, arXiv:1810.03613 [astro-ph.HE].
- S. S. Komissarov, “Observations of the Blandford-Znajek and the MHD Penrose processes in computer simulations of black hole magnetospheres,” Mon. Not. Roy. Astron. Soc. 359 (2005) 801–808, arXiv:astro-ph/0501599.
- W. E. East and H. Yang, “Magnetosphere of a spinning black hole and the role of the current sheet,” Phys. Rev. D 98 no. 2, (2018) 023008, arXiv:1805.05952 [astro-ph.HE].
- B. Ripperda, F. Bacchini, and A. Philippov, “Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks,” Astrophys. J. 900 no. 2, (2020) 100, arXiv:2003.04330 [astro-ph.HE].
- L. Comisso, M. Lingam, Y.-M. Huang, and A. Bhattacharjee, “General theory of the plasmoid instability,” Physics of Plasmas 23 no. 10, (2016) 100702, arxiv:1608.04692 [astro-ph, physics:math-ph, physics:physics].
- D. A. Uzdensky, N. F. Loureiro, and A. A. Schekochihin, “Fast magnetic reconnection in the plasmoid-dominated regime,” Phys. Rev. Lett. 105 (2010) 235002, arxiv:1008.3330 [astro-ph.SR].
- L. Comisso, M. Lingam, Y.-M. Huang, and A. Bhattacharjee, “Plasmoid instability in forming current sheets,” Astrophys. J. 850 no. 2, (2017) 142, arxiv:1707.01862 [astro-ph.HE].
- W. Daughton, V. Roytershteyn, B. J. Albright, H. Karimabadi, L. Yin, and K. J. Bowers, “Transition from collisional to kinetic regimes in large-scale reconnection layers,” Phys. Rev. Lett. 103 no. 6, (2009) 065004.
- A. Bhattacharjee, Y.-M. Huang, H. Yang, and B. Rogers, “Fast reconnection in high-lundquist-number plasmas due to secondary tearing instabilities,” Physics of Plasmas 16 no. 11, (2009) 112102, arxiv:0906.5599 [physics].
- K. Mori et al., “NuSTAR discovery of a 3.76-second transient magnetar near Sagittarius A*,” Astrophys. J. Lett. 770 (2013) L23, arXiv:1305.1945 [astro-ph.HE].
- J. A. Kennea et al., “Swift Discovery of a New Soft Gamma Repeater, SGR J1745-29, near Sagittarius A*,” Astrophys. J. Lett. 770 (2013) L24, arXiv:1305.2128 [astro-ph.HE].
- R. P. Eatough et al., “A strong magnetic field around the supermassive black hole at the centre of the Galaxy,” Nature 501 (2013) 391–394, arXiv:1308.3147 [astro-ph.GA].
- S. A. Olausen and V. M. Kaspi, “The McGill Magnetar Catalog,” Astrophys. J. Suppl. 212 (2014) 6, arXiv:1309.4167 [astro-ph.HE].
- Event Horizon Telescope Collaboration, K. Akiyama et al., “First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon,” Astrophys. J. Lett. 910 no. 1, (2021) L13, arXiv:2105.01173 [astro-ph.HE].
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54 (1996) 5049–5058, arXiv:hep-th/9511071.
- D. Ayzenberg and N. Yunes, “Slowly-Rotating Black Holes in Einstein-Dilaton-Gauss-Bonnet Gravity: Quadratic Order in Spin Solutions,” Phys. Rev. D 90 (2014) 044066, arXiv:1405.2133 [gr-qc]. [Erratum: Phys.Rev.D 91, 069905 (2015)].
- A. Maselli, P. Pani, L. Gualtieri, and V. Ferrari, “Rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity with finite coupling,” Phys. Rev. D 92 no. 8, (2015) 083014, arXiv:1507.00680 [gr-qc].
- B. Kleihaus, J. Kunz, S. Mojica, and E. Radu, “Spinning black holes in Einstein–Gauss-Bonnet–dilaton theory: Nonperturbative solutions,” Phys. Rev. D 93 no. 4, (2016) 044047, arXiv:1511.05513 [gr-qc].
- K. D. Kokkotas, R. A. Konoplya, and A. Zhidenko, “Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric,” Phys. Rev. D 96 no. 6, (2017) 064004, arXiv:1706.07460 [gr-qc].
- N. Yunes and F. Pretorius, “Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation,” Phys. Rev. D 79 (2009) 084043, arXiv:0902.4669 [gr-qc].
- K. Yagi, N. Yunes, and T. Tanaka, “Slowly Rotating Black Holes in Dynamical Chern-Simons Gravity: Deformation Quadratic in the Spin,” Phys. Rev. D 86 (2012) 044037, arXiv:1206.6130 [gr-qc]. [Erratum: Phys.Rev.D 89, 049902 (2014)].
- R. McNees, L. C. Stein, and N. Yunes, “Extremal black holes in dynamical Chern–Simons gravity,” Class. Quant. Grav. 33 no. 23, (2016) 235013, arXiv:1512.05453 [gr-qc].
- T. Delsate, C. Herdeiro, and E. Radu, “Non-perturbative spinning black holes in dynamical Chern–Simons gravity,” Phys. Lett. B 787 (2018) 8–15, arXiv:1806.06700 [gr-qc].
- A. Sen, “Rotating charged black hole solution in heterotic string theory,” Phys. Rev. Lett. 69 (1992) 1006–1009, arXiv:hep-th/9204046.
- S. Vigeland, N. Yunes, and L. Stein, “Bumpy Black Holes in Alternate Theories of Gravity,” Phys. Rev. D 83 (2011) 104027, arXiv:1102.3706 [gr-qc].
- T. Johannsen, “Regular Black Hole Metric with Three Constants of Motion,” Phys. Rev. D 88 no. 4, (2013) 044002, arXiv:1501.02809 [gr-qc].
- R. Konoplya, L. Rezzolla, and A. Zhidenko, “General parametrization of axisymmetric black holes in metric theories of gravity,” Phys. Rev. D 93 no. 6, (2016) 064015, arxiv:1602.02378 [gr-qc].
- G. O. Papadopoulos and K. D. Kokkotas, “Preserving Kerr symmetries in deformed spacetimes,” Class. Quant. Grav. 35 no. 18, (2018) 185014, arXiv:1807.08594 [gr-qc].
- Z. Carson and K. Yagi, “Asymptotically flat, parameterized black hole metric preserving Kerr symmetries,” Phys. Rev. D 101 no. 8, (2020) 084030, arXiv:2002.01028 [gr-qc].
- S.-W. Wei, H.-M. Wang, Y.-P. Zhang, and Y.-X. Liu, “Effects of tidal charge on magnetic reconnection and energy extraction from spinning braneworld black hole,” JCAP 04 no. 04, (2022) 050, arxiv:2201.12729 [gr-qc].
- W. Liu, “Energy extraction via magnetic reconnection in the ergosphere of a rotating non-kerr black hole,” Astrophys. J. 925 no. 2, (2022) 149, arxiv:2204.07338 [astro-ph.HE].
- A. Carleo, G. Lambiase, and L. Mastrototaro, “Energy extraction via magnetic reconnection in lorentz breaking kerr–sen and kiselev black holes,” Eur. Phys. J. C 82 no. 9, (2022) 776, arxiv:2206.12988 [gr-qc].
- M. Khodadi, “Magnetic reconnection and energy extraction from a spinning black hole with broken lorentz symmetry,” Phys. Rev. D 105 no. 2, (2022) 023025, arxiv:2201.02765 [gr-qc].
- Z. Li, X.-K. Guo, and F. Yuan, “Energy extraction from rotating regular black hole via comisso-asenjo mechanism,” Phys. Rev. D 108 no. 4, (2023) 044067, arxiv:2304.08831 [gr-qc].
- Z. Li and F. Yuan, “Energy extraction via comisso-asenjo mechanism from rotating hairy black hole,” Phys. Rev. D 108 no. 2, (2023) 024039, arxiv:2304.12553 [gr-qc].
- M. Khodadi, D. F. Mota, and A. Sheykhi, “Harvesting energy driven by comisso-asenjo process from kerr-mog black holes,” JCAP 10 (2023) 034, arxiv:2307.00478 [astro-ph.HE].
- S. Shaymatov, M. Alloqulov, B. Ahmedov, and A. Wang, “A kerr-newman-mog black hole’s impact on the magnetic reconnection,” arXiv:2307.03012 [gr-qc] (2023) , arxiv:2307.03012 [gr-qc].
- C.-H. Wang, C.-Q. Pang, and S.-W. Wei, “Extracting energy via magnetic reconnection from kerr–de sitter black holes,” Phys. Rev. D 106 no. 12, (2022) 124050, arxiv:2209.08837 [gr-qc].
- Y. Ni, J. Jiang, and C. Bambi, “Testing the kerr metric with the iron line and the krz parametrization,” JCAP 09 no. 09, (2016) 014, arxiv:1607.04893 [gr-qc].
- S. Nampalliwar, S. Xin, S. Srivastava, A. B. Abdikamalov, D. Ayzenberg, C. Bambi, T. Dauser, J. A. Garcia, and A. Tripathi, “Testing general relativity with x-ray reflection spectroscopy: The konoplya-rezzolla-zhidenko parametrization,” Phys. Rev. D 102 no. 12, (2020) 124071, arxiv:1903.12119 [gr-qc].
- S. Li and W.-B. Han, “A full waveform model for arbitrarily axis-symmetric black hole mergers,” Phys. Rev. D 108 no. 8, (2023) 083032, arxiv:2307.00797 [gr-qc].
- A. B. Abdikamalov, D. Ayzenberg, C. Bambi, S. Nampalliwar, and A. Tripathi, “Constraining the krz deformation parameters i: Limits from supermassive black hole x-ray data,” Phys. Rev. D 104 no. 2, (2021) 024058, arxiv:2104.04183 [astro-ph.HE].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.