Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An image-based transfer learning approach for using in situ processing data to predict laser powder bed fusion additively manufactured Ti-6Al-4V mechanical properties (2402.14945v1)

Published 22 Feb 2024 in physics.app-ph

Abstract: The mitigation of material defects from additive manufacturing (AM) processes is critical to reliability in their fabricated parts and is enabled by modeling the complex relations between available build monitoring signals and final mechanical performance. To this end, the present study investigates a machine learning approach for predicting mechanical properties for Ti-6Al-4V fabricated through laser powder bed fusion (PBF-LB) AM using in situ photodiode processing signals. Samples were fabricated under different processing parameters, varying laser powers and scan speeds for the purpose of probing a wide range of microstructure and property variations. Photodiode data were collected during fabrication, later to be arranged in image format and extracted to information-dense vectors by the transferal of deep convolutional neural network (DCNN) structures and weights pre-trained on a large computer vision benchmark image database. The extracted features were then used to train and test a newly designed regression model for mechanical properties. Average cross-validation accuracies were found to be 98.7% (r2 value of 0.89) for the prediction of ultimate tensile strength, which ranged from 900 to 1150 MPa in the samples studied, and 93.1% (r2 value of 0.96) for the prediction of elongation to fracture, which ranged from 0 to 17%. Thus, with high accuracy and hardware accelerated inference speeds, we demonstrate that a transfer learning framework can be used to predict strength and ductility of metal AM components based on processing signals in PBF-LB, illustrating a potential route toward real-time closed-loop control and process optimization of PBF-LB in industrial applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.