Expectation Values of Conserved Charges in Integrable Quantum Field Theories out of Thermal Equilibrium (2402.14788v2)
Abstract: In this work we present a computation of the averages of conserved charge densities and currents of (1+1)-dimensional Integrable Quantum Field Theories in Generalised Gibbs Ensembles. Our approach is based on the quasi-particle description provided by the Thermodynamic Bethe Ansatz combined with the principles of Generalised Hydrodynamics, and we focus on Non-Equilibrium Steady State averages. When considering the ultraviolet (i.e. high temperature) limit of such averages, we recover the famous result by Bernard and Doyon (2012) for the energy current and density in Conformal Field Theories, and we extend it to conserved quantities with spin $s > 1$. We show that their averages are proportional to $T_L{s+1}\pm T_R{s+1}$, with $T_L$, $T_R$ the temperatures of two asymptotic thermal reservoirs. The same power law is obtained when considering some non-thermal generalised Gibbs states. In Conformal Field Theory, the power law is a consequence of the transformation properties of conserved charge operators, while the proportionality coefficient depends on the spin of the operator and on the central charge of the theory. We present an exact analytic expression for this coefficient in the case of a massive free fermion. At equilibrium, proportionality of spin-$s$ density averages to $T{s+1}$ can be thought of as a generalisation of Stefan-Boltzmann's law, which states that the energy per unit surface area radiated by a black body scales as $T4$.
- Toshiya Kinoshita, Trevor Wenger and David S Weiss “A quantum Newton’s cradle” In Nature 440.7086 Nature Publishing Group UK London, 2006, pp. 900–903 DOI: https://doi.org/10.1038/nature04693
- “Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 050405 DOI: 10.1103/PhysRevLett.98.050405
- Olalla A. Castro-Alvaredo, Benjamin Doyon and Takato Yoshimura “Emergent hydrodynamics in integrable quantum systems out of equilibrium” In Phys. Rev. X 6.4, 2016, pp. 041065 DOI: 10.1103/PhysRevX.6.041065
- “Transport in Out-of-Equilibrium XXZ𝑋𝑋𝑍XXZitalic_X italic_X italic_Z Chains: Exact Profiles of Charges and Currents” In Phys. Rev. Lett. 117 American Physical Society, 2016, pp. 207201 DOI: 10.1103/PhysRevLett.117.207201
- Benjamin Doyon “Lecture notes on Generalised Hydrodynamics” In SciPost Phys. Lect. Notes 18, 2020, pp. 1 DOI: 10.21468/SciPostPhysLectNotes.18
- Fabian H.L. Essler “A short introduction to Generalized Hydrodynamics” In Physica A: Statistical Mechanics and its Applications, 2022, pp. 127572 DOI: https://doi.org/10.1016/j.physa.2022.127572
- “Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble” In Phys. Rev. Lett. 113.11 American Physical Society (APS), 2014 DOI: 10.1103/physrevlett.113.117203
- Enej Ilievski, Marko Medenjak and T Prosen “Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2121/21 / 2 Chain” In Phys. Rev. Lett. 115 American Physical Society, 2015, pp. 120601 DOI: 10.1103/PhysRevLett.115.120601
- “Quasilocal charges in integrable lattice systems” In J. Stat. Mech. 2016.6 IOP Publishing, 2016, pp. 064008 DOI: 10.1088/1742-5468/2016/06/064008
- Eric Vernier and Axel Cortés Cubero “Quasilocal charges and progress towards the complete GGE for field theories with nondiagonal scattering” In J. Stat. Mech. 2017.2 IOP Publishing, 2017, pp. 023101 DOI: 10.1088/1742-5468/aa5288
- “Energy flow in non-equilibrium conformal field theory” In J. Phys. A 45.36 IOP Publishing, 2012, pp. 362001 DOI: 10.1088/1751-8113/45/36/362001
- “Non-Equilibrium Steady States in Conformal Field Theory” In Annales Henri Poincaré 16.1 Springer ScienceBusiness Media LLC, 2014, pp. 113–161 DOI: 10.1007/s00023-014-0314-8
- “Conformal field theory out of equilibrium: a review” In J. Stat. Mech. 2016.6 IOP Publishing, 2016, pp. 064005 DOI: 10.1088/1742-5468/2016/06/064005
- “Energy flow in quantum critical systems far from equilibrium” In Nature Physics 11.6, 2015, pp. 509–514 DOI: 10.1038/nphys3320
- C. Karrasch, R. Ilan and J.E. Moore “Nonequilibrium thermal transport and its relation to linear response” In Phys. Rev. B 88 American Physical Society, 2013, pp. 195129 DOI: 10.1103/PhysRevB.88.195129
- “Energy transport in Heisenberg chains beyond the Luttinger liquid paradigm” In Phys. Rev. B 90 American Physical Society, 2014, pp. 161101 DOI: 10.1103/PhysRevB.90.161101
- “Energy transport between two integrable spin chains” In Phys. Rev. B 93 American Physical Society, 2016, pp. 205121 DOI: 10.1103/PhysRevB.93.205121
- “Nonequilibrium thermal transport in the quantum Ising chain” In Phys. Rev. B 88 American Physical Society, 2013, pp. 134301 DOI: 10.1103/PhysRevB.88.134301
- Márton Kormos “Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics” In SciPost Phys. 3 SciPost, 2017, pp. 020 DOI: 10.21468/SciPostPhys.3.3.020
- “Ballistic front dynamics after joining two semi-infinite quantum Ising chains” In Phys. Rev. E 96 American Physical Society, 2017, pp. 012138 DOI: 10.1103/PhysRevE.96.012138
- Bruno Bertini, Lorenzo Piroli and Pasquale Calabrese “Universal Broadening of the Light Cone in Low-Temperature Transport” In Phys. Rev. Lett. 120.17, 2018, pp. 176801 DOI: 10.1103/PhysRevLett.120.176801
- “Low-temperature transport in out-of-equilibrium XXZ chains” In J. Stat. Mech. 1803.3, 2018, pp. 033104 DOI: 10.1088/1742-5468/aab04b
- “Quantum Quenches in Integrable Field Theories” In New J. Phys. 12, 2010, pp. 055015 DOI: 10.1088/1367-2630/12/5/055015
- “Generalized TBA and generalized Gibbs” In J. Phys. A 45, 2012, pp. 255001 DOI: 10.1088/1751-8113/45/25/255001
- Al.B. Zamolodchikov “Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models” In Nucl. Phys. B342, 1990, pp. 695–720 DOI: 10.1016/0550-3213(90)90333-9
- Timothy R Klassen and Ezer Melzer “Purely elastic scattering theories and their ultraviolet limits” In Nuclear Physics B 338.3 Elsevier, 1990, pp. 485–528
- “The Thermodynamics of purely elastic scattering theories and conformal perturbation theory” In Nucl. Phys. B350, 1991, pp. 635–689 DOI: 10.1016/0550-3213(90)90643-R
- A.B. Zamolodchikov “Integrable field theory from conformal field theory” In Adv. Stud. Pure Math. 19, 1989, pp. 641–674
- Vladimir V. Bazhanov, Sergei L. Lukyanov and Alexander B. Zamolodchikov “Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz” In Commun. Math. Phys. 177, 1996, pp. 381–398 DOI: 10.1007/BF02101898
- A.B. Zamolodchikov “From tricritical Ising to critical Ising by thermodynamic Bethe ansatz” In Nucl. Phys. B 358, 1991, pp. 524–546 DOI: 10.1016/0550-3213(91)90423-U
- “The staircase model: massless flows and hydrodynamics” In J. Phys. A 54.40, 2021, pp. 404005 DOI: 10.1088/1751-8121/ac2141
- Al B Zamolodchikov “Resonance factorized scattering and roaming trajectories” In J. Phys. A 39.41 IOP Publishing, 2006, pp. 12847 DOI: 10.1088/0305-4470/39/41/S08
- H.W.J. Bloete, John L. Cardy and M.P. Nightingale “Conformal Invariance, the Central Charge, and Universal Finite Size Amplitudes at Criticality” In Phys. Rev. Lett. 56, 1986, pp. 742–745 DOI: 10.1103/PhysRevLett.56.742
- Ian Affleck “Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly” In Phys. Rev. Lett. 56, 1986, pp. 746–748 DOI: 10.1103/PhysRevLett.56.746
- John Cardy “The ubiquitous ‘c’: from the Stefan–Boltzmann law to quantum information” In J. Stat. Mech. 2010.10 IOP Publishing, 2010, pp. P10004 DOI: 10.1088/1742-5468/2010/10/p10004
- “A note on generalized hydrodynamics: inhomogeneous fields and other concepts” In SciPost Phys. 2.2, 2017, pp. 014 DOI: 10.21468/SciPostPhys.2.2.014
- “Collision rate ansatz for quantum integrable systems” In SciPost Phys. 9.3, 2020, pp. 040 DOI: 10.21468/SciPostPhys.9.3.040
- Márton Borsi, Balázs Pozsgay and Levente Pristyák “Current operators in Bethe ansatz and generalized hydrodynamics: An exact quantum-classical correspondence” In Phys. Rev. X 10.1 APS, 2020, pp. 011054 DOI: 10.1103/physrevx.10.011054
- M.árton Borsi, Balázs Pozsgay and Levente Pristyák “Current operators in integrable models: a review” In J. Stat. Mech. 2109, 2021, pp. 094001 DOI: 10.1088/1742-5468/ac0f6b
- “Exact finite volume expectation values of conserved currents” In Phys. Lett. B 805, 2020, pp. 135446 DOI: 10.1016/j.physletb.2020.135446
- Alexei B. Zamolodchikov “On the thermodynamic Bethe ansatz equation in sinh-Gordon model” In J. Phys. A 39, 2006, pp. 12863–12887 DOI: 10.1088/0305-4470/39/41/S09
- John L. Cardy and G. Mussardo “S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions” In Phys. Lett. B 225, 1989, pp. 275–278 DOI: 10.1016/0370-2693(89)90818-6
- “Transport fluctuations in integrable models out of equilibrium” In SciPost Physics 8.1 Stichting SciPost, 2020 DOI: 10.21468/scipostphys.8.1.007
- Alexander B. Zamolodchikov “Expectation value of composite field T anti-T in two-dimensional quantum field theory”, 2004 arXiv:hep-th/0401146
- “On space of integrable quantum field theories” In Nucl. Phys. B 915, 2017, pp. 363–383 DOI: 10.1016/j.nuclphysb.2016.12.014
- “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories” In JHEP 10, 2016, pp. 112 DOI: 10.1007/JHEP10(2016)112
- Marko Medenjak, Giuseppe Policastro and Takato Yoshimura “Thermal transport in TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: From integrability to holography” In Phys. Rev. D 103.6, 2021, pp. 066012 DOI: 10.1103/PhysRevD.103.066012
- Marko Medenjak, Giuseppe Policastro and Takato Yoshimura “TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformed Conformal Field Theories out of Equilibrium” In Phys. Rev. Lett. 126.12, 2021, pp. 121601 DOI: 10.1103/PhysRevLett.126.121601
- Riccardo Travaglino, Michele Mazzoni and Olalla A. Castro-Alvaredo “Generalised Hydrodynamics of TT¯T¯T\mathrm{T\bar{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Integrable Quantum Field Theories” In To appear soon
- Al B Zamolodchikov “On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories” In Physics Letters B 253.3-4 North-Holland, 1991, pp. 391–394
- F. Ravanini, A. Valleriani and R. Tateo “Dynkin TBA’s” In Int. J. Mod. Phys. A 08.10, 1993, pp. 1707–1727 DOI: 10.1142/S0217751X93000709
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.