Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint AP-UE Association and Power Factor Optimization for Distributed Massive MIMO (2402.14693v7)

Published 22 Feb 2024 in cs.NI, cs.IT, and math.IT

Abstract: The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Magazine, vol. 52, no. 2, pp. 186–195, 2014.
  2. E. Björnson, J. Hoydis, L. Sanguinetti et al., “Massive MIMO networks: Spectral, energy, and hardware efficiency,” Foundations and Trends® in Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.
  3. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. on Wireless Commun., vol. 16, no. 3, pp. 1834–1850, 2017.
  4. E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and power optimization in cell-free massive MIMO systems,” IEEE Trans on Wireless Commun, vol. 16, no. 7, pp. 4445–4459, 2017.
  5. H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE Trans. on Green Commun. and Network., vol. 2, no. 1, pp. 25–39, 2017.
  6. E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO systems,” IEEE Trans. on Commun., vol. 68, no. 7, pp. 4247–4261, 2020.
  7. S. Buzzi and C. D’Andrea, “Cell-free massive mimo: User-centric approach,” IEEE Wireless Commun. Letters, vol. 6, no. 6, pp. 706–709, 2017.
  8. R. Nikbakht, R. Mosayebi, and A. Lozano, “Uplink fractional power control and downlink power allocation for cell-free networks,” IEEE Wireless Commun. Letters, vol. 9, no. 6, pp. 774–777, 2020.
  9. S. Buzzi, C. D’Andrea, A. Zappone, and C. D’Elia, “User-centric 5g cellular networks: Resource allocation and comparison with the cell-free massive mimo approach,” IEEE Trans. on Wireless Commun., vol. 19, no. 2, pp. 1250–1264, 2019.
  10. N. Ghiasi, S. Mashhadi, S. Farahmand, S. M. Razavizadeh, and I. Lee, “Energy efficient ap selection for cell-free massive mimo systems: Deep reinforcement learning approach,” IEEE Trans. on Green Commun. and Network., vol. 7, no. 1, pp. 29–41, 2022.
  11. T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Joint power allocation and access point selection for cell-free massive mimo,” in Proc. IEEE ICC, Online, June 2020.
  12. M. Guenach, A. A. Gorji, and A. Bourdoux, “A deep neural architecture for real-time access point scheduling in uplink cell-free massive mimo,” IEEE Trans. on Wireless Commun., vol. 21, no. 3, pp. 1529–1541, 2021.
  13. H. Q. Ngo, H. Tataria, M. Matthaiou, S. Jin, and E. G. Larsson, “On the performance of cell-free massive mimo in ricean fading,” in Proc. ACSSC, USA, Oct. 2018.
  14. M. Guenach, A. A. Gorji, and A. Bourdoux, “Joint power control and access point scheduling in fronthaul-constrained uplink cell-free massive mimo systems,” IEEE Trans. on Commun., vol. 69, no. 4, pp. 2709–2722, 2020.
  15. Y. Tsuruoka, J. Tsujii, and S. Ananiadou, “Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty,” in Proc. of the Joint Conference ACL and IJCNLP, Singapore, Aug. 2009.
  16. T. C. Mai, H. Q. Ngo, M. Egan, and T. Q. Duong, “Pilot power control for cell-free massive mimo,” IEEE Trans. on Veh. Techno., vol. 67, no. 11, pp. 11 264–11 268, 2018.
  17. K. Shen and W. Yu, “Fractional programming for communication systems—part ii: Uplink scheduling via matching,” IEEE Trans. on Signal Processing, vol. 66, no. 10, pp. 2631–2644, 2018.
  18. H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor, “Joint load balancing and interference management for small-cell heterogeneous networks with limited backhaul capacity,” IEEE Trans. on Wireless Commun., vol. 16, no. 2, pp. 872–884, 2016.
  19. G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and distributed methods for constrained nonconvex optimization—part i: Theory,” IEEE Trans. on Signal Processing, vol. 65, no. 8, pp. 1929–1944, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com