Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint User Association and Power Control for Cell-Free Massive MIMO (2401.02701v2)

Published 5 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: This work proposes novel approaches that jointly design user equipment (UE) association and power control (PC) in a downlink user-centric cell-free massive multiple-input multiple-output (CFmMIMO) network, where each UE is only served by a set of access points (APs) for reducing the fronthaul signalling and computational complexity. In order to maximize the sum spectral efficiency (SE) of the UEs, we formulate a mixed-integer nonconvex optimization problem under constraints on the per-AP transmit power, quality-of-service rate requirements, maximum fronthaul signalling load, and maximum number of UEs served by each AP. In order to solve the formulated problem efficiently, we propose two different schemes according to the different sizes of the CFmMIMO systems. For small-scale CFmMIMO systems, we present a successive convex approximation (SCA) method to obtain a stationary solution and also develop a learning-based method (JointCFNet) to reduce the computational complexity. For large-scale CFmMIMO systems, we propose a low-complexity suboptimal algorithm using accelerated projected gradient (APG) techniques. Numerical results show that our JointCFNet can yield similar performance and significantly decrease the run time compared with the SCA algorithm in small-scale systems. The presented APG approach is confirmed to run much faster than the SCA algorithm in the large-scale system while obtaining an SE performance close to that of the SCA approach. Moreover, the median sum SE of the APG method is up to about 2.8 fold higher than that of the heuristic baseline scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. C. Hao, T. T. Vu, H. Q. Ngo, M. N. Dao, X. Dang, and M. Matthaiou, “User association and power control in cell-free massive MIMO with the APG method,” in Proc. IEEE EUSIPCO, Sep. 2023.
  2. M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L. Cotton, and V. F. Fusco, “The road to 6G: Ten physical layer challenges for communications engineers,” IEEE Commun. Mag., vol. 59, no. 1, pp. 64–69, Jan. 2021.
  3. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Select. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  4. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
  5. E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, Jan. 2020.
  6. ——, “Scalable cell-free massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Apr. 2020.
  7. S. Buzzi and C. D’Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709, Aug. 2017.
  8. D. Liu, S. Han, C. Yang, and Q. Zhang, “Semi-dynamic user-specific clustering for downlink cloud radio access network,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2063–2077, May 2016.
  9. H. A. Ammar and R. Adve, “Power delay profile in coordinated distributed networks: User-centric v/s disjoint clustering,” in Proc. IEEE GlobalSIP, Jan. 2019, pp. 1–5.
  10. H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “Distributed resource allocation optimization for user-centric cell-free MIMO networks,” IEEE Trans. Commun., vol. 21, no. 5, pp. 3099–3115, Oct. 2022.
  11. A. Gjendemsjo, D. Gesbert, G. E. Oien, and S. G. Kiani, “Binary power control for sum rate maximization over multiple interfering links,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3164–3173, Aug. 2008.
  12. Y. Zhao, I. G. Niemegeers, and S. H. De Groot, “Power allocation in cell-free massive MIMO: A deep learning method,” IEEE Access, vol. 8, pp. 87 185–87 200, May 2020.
  13. C. D’Andrea and E. G. Larsson, “User association in scalable cell-free massive MIMO systems,” in Proc. IEEE ASILOMAR, Nov. 2020, pp. 826–830.
  14. H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE Trans. Green Commun. Networking, vol. 2, no. 1, pp. 25–39, Mar. 2018.
  15. M. Guenach, A. A. Gorji, and A. Bourdoux, “A deep neural architecture for real-time access point scheduling in uplink cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1529–1541, Aug. 2022.
  16. R. Nikbakht and A. Lozano, “Uplink fractional power control for cell-free wireless networks,” in Proc. ICC, Jul. 2019, pp. 1–5.
  17. S. Chakraborty, Ö. T. Demir, E. Björnson, and P. Giselsson, “Efficient downlink power allocation algorithms for cell-free massive MIMO systems,” IEEE Open J. Commun. Soc., vol. 2, pp. 168–186, Dec. 2021.
  18. L. Salaün and H. Yang, “Deep learning based power control for cell-free massive MIMO with MRT,” in Proc. IEEE GLOBECOM, Dec. 2021, pp. 1–7.
  19. M. Zaher, Ö. T. Demir, E. Björnson, and M. Petrova, “Learning-based downlink power allocation in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 174–188, Jul. 2023.
  20. L. Salaün, H. Yang, S. Mishra, and C. S. Chen, “A GNN approach for cell-free massive MIMO,” in Proc. IEEE GLOBECOM, Dec. 2022, pp. 3053–3058.
  21. S. Buzzi, C. D’Andrea, A. Zappone, and C. D’Elia, “User-centric 5G cellular networks: Resource allocation and comparison with the cell-free massive MIMO approach,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1250–1264, Nov. 2020.
  22. J. García-Morales, G. Femenias, and F. Riera-Palou, “Energy-efficient access-point sleep-mode techniques for cell-free mmwave massive MIMO networks with non-uniform spatial traffic density,” IEEE Access, vol. 8, pp. 137 587–137 605, Jul. 2020.
  23. G. Femenias, N. Lassoued, and F. Riera-Palou, “Access point switch on/off strategies for green cell-free massive MIMO networking,” IEEE Access, vol. 8, pp. 21 788–21 803, Jan. 2020.
  24. C. F. Mendoza, S. Schwarz, and M. Rupp, “Deep reinforcement learning for dynamic access point activation in cell-free MIMO networks,” in Proc. IEEE/ITG WSA, Mar. 2021, pp. 1–6.
  25. R. Y. Chang, S.-F. Han, and F.-T. Chien, “Reinforcement learning-based joint cooperation clustering and content caching in cell-free massive MIMO networks,” in Proc. IEEE VTC, Dec. 2021, pp. 1–7.
  26. N. Ghiasi, S. Mashhadi, S. Farahmand, S. M. Razavizadeh, and I. Lee, “Energy efficient AP selection for cell-free massive MIMO systems: Deep reinforcement learning approach,” IEEE Trans. Green Commun. Networking, vol. 7, no. 1, pp. 29–41, Aug. 2023.
  27. H. Q. Ngo, H. Tataria, M. Matthaiou, S. Jin, and E. G. Larsson, “On the performance of cell-free massive MIMO in Ricean fading,” in Proc. IEEE ASILOMAR, Oct. 2018, pp. 980–984.
  28. T. X. Vu, S. Chatzinotas, S. ShahbazPanahi, and B. Ottersten, “Joint power allocation and access point selection for cell-free massive MIMO,” in Proc. IEEE ICC, Jul. 2020, pp. 1–6.
  29. N. Rajapaksha, K. B. Shashika Manosha, N. Rajatheva, and M. Latva-Aho, “Deep learning-based power control for cell-free massive MIMO networks,” in Proc. IEEE ICC, Jun. 2021, pp. 1–7.
  30. C. D’Andrea, A. Zappone, S. Buzzi, and M. Debbah, “Uplink power control in cell-free massive MIMO via deep learning,” in Proc. IEEE CAMSAP, Dec. 2019, pp. 554–558.
  31. M. Rahmani, M. Bashar, M. J. Dehghani, P. Xiao, R. Tafazolli, and M. Debbah, “Deep reinforcement learning-based power allocation in uplink cell-free massive MIMO,” in Proc. IEEE WCNC, May 2022, pp. 459–464.
  32. G. Interdonato, M. Karlsson, E. Björnson, and E. G. Larsson, “Local partial zero-forcing precoding for cell-free massive MIMO,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4758–4774, Jul. 2020.
  33. M. Farooq, H. Q. Ngo, E.-K. Hong, and L.-N. Tran, “Utility maximization for large-scale cell-free massive MIMO downlink,” IEEE Trans. Commun., vol. 69, no. 10, pp. 7050–7062, Oct. 2021.
  34. T. C. Mai, H. Q. Ngo, and L.-N. Tran, “Energy efficiency maximization in large-scale cell-free massive MIMO: A projected gradient approach,” IEEE Trans. Wireless Commun., vol. 21, no. 8, pp. 6357–6371, Feb. 2022.
  35. M. Bashar, K. Cumanan, A. G. Burr, H. Q. Ngo, M. Debbah, and P. Xiao, “Max–min rate of cell-free massive MIMO uplink with optimal uniform quantization,” IEEE Trans. Commun., vol. 67, no. 10, pp. 6796–6815, Oct. 2019.
  36. T. T. Vu, D. T. Ngo, H. Q. Ngo, M. N. Dao, N. H. Tran, and R. H. Middleton, “Joint resource allocation to minimize execution time of federated learning in cell-free massive MIMO,” IEEE Internet Things J., vol. 9, no. 21, pp. 21 736–21 750, Jun. 2022.
  37. G. Interdonato, H. Q. Ngo, P. Frenger, and E. G. Larsson, “Downlink training in cell-free massive MIMO: A blessing in disguise,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5153–5169, Nov. 2019.
  38. T. T. Vu, D. T. Ngo, M. N. Dao, S. Durrani, and R. H. Middleton, “Spectral and energy efficiency maximization for content-centric C-RANs with edge caching,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6628–6642, Dec. 2018.
  39. T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H. Middleton, “Cell-free massive MIMO for wireless federated learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377–6392, Oct. 2020.
  40. H. H. M. Tam, H. D. Tuan, D. T. Ngo, T. Q. Duong, and H. V. Poor, “Joint load balancing and interference management for small-cell heterogeneous networks with limited backhaul capacity,” IEEE Trans. Wireless Commun., vol. 16, no. 2, pp. 872–884, Feb. 2017.
  41. A. Barron, “Universal approximation bounds for superpositions of a sigmoidal function,” IEEE Trans. Inform. Theory, vol. 39, no. 3, pp. 930–945, May 1993.
  42. M. Leshno and V. Ya.Lin, “Multilayer feedforward networks with a nonpolynomial activation function can approximate any function,” Neural Networks, vol. 6, no. 6, pp. 861–867, 1993.
  43. T. Van Chien, T. Nguyen Canh, E. Björnson, and E. G. Larsson, “Power control in cellular massive MIMO with varying user activity: A deep learning solution,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5732–5748, May 2020.
  44. M. Bashar, A. Akbari, K. Cumanan, H. Q. Ngo, A. G. Burr, P. Xiao, M. Debbah, and J. Kittler, “Exploiting deep learning in limited-fronthaul cell-free massive MIMO uplink,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1678–1697, Jun. 2020.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. ICLR, pp. 1–15, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980
  46. K. He and J. Sun, “Convolutional neural networks at constrained time cost,” in Proc. IEEE CVPR, Jun. 2015, pp. 5353–5360.
  47. H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex programming,” in Proc. NIPS, vol. 28, Dec. 2015, pp. 379–387.
  48. A. R. D. Pierro and E. S. ao Helou Neto, “From convex feasibility to convex constrained optimization using block action projection methods and underrelaxation,” Intl. Trans. in Op. Res., vol. 16, p. 495–504, 2009.
  49. V. Sharma, “What is video bandwidth? 720p, 1080p, GB transfer explained,” 2021. [Online]. Available: https://www.vdocipher.com/blog/video-bandwidth-explanation/
  50. S. Buzzi and A. Zappone, “Downlink power control in user-centric and cell-free massive MIMO wireless networks,” in Proc. IEEE PIMRC, Oct. 2017, pp. 1–6.
  51. L. D. Nguyen, T. Q. Duong, H. Q. Ngo, and K. Tourki, “Energy efficiency in cell-free massive MIMO with zero-forcing precoding design,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1871–1874, Apr. 2017.
  52. T. C. Mai, H. Q. Ngo, M. Egan, and T. Q. Duong, “Pilot power control for cell-free massive MIMO,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11 264–11 268, Aug. 2018.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com