Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Infinite quantum twisting at the Cauchy horizon of rotating black holes (2402.14171v2)

Published 21 Feb 2024 in gr-qc and hep-th

Abstract: We present a numerical calculation of the expectation value of the quantum angular-momentum current flux density for a scalar field in the Unruh state near the inner horizon of a Kerr-de Sitter black hole. Our results indicate that this flux diverges as $V_-{-1}$ in a suitable Kruskal coordinate such that $V_-=0$ at the inner horizon. Depending on the parameter values of the scalar field and black hole that we consider, and depending on the polar angle (latitude), this flux can have different signs. In the near extremal cases considered, the angle average of the expectation value of the quantum angular momentum current flux is of the opposite sign as the angular momentum of the background itself, suggesting that, in the cases considered, quantum effects tend to decrease the total angular momentum of the spheres away from the extremal value. We also numerically calculate the energy flux component, which provides the leading order divergence of the quantum stress energy tensor, dominant over the classical stress energy tensor, at the inner horizon. Taking our expectation value of the quantum stress tensor as the source in the semiclassical Einstein equation, our analysis suggests that the spheres approaching the inner horizon can undergo an infinite twisting due to quantum effects along latitudes separating regions of infinite expansion and contraction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. Penrose, “Gravitational radiation and gravitational collapse,”  (Springer, Heidelberg, 1974) Chap. Gravitational collapse.
  2. E. Poisson and W. Israel, Phys. Rev. Lett. 63, 1663 (1989).
  3. E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).
  4. A. Ori, Phys. Rev. Lett. 67, 789 (1991).
  5. M. Dafermos and J. Luk,   (2017), arXiv:1710.01722 [gr-qc] .
  6. For essentially non-linear effects in spherical symmetry, see Li and Van de Moortel (2023).
  7. D. Christodoulou, The Formation of Black Holes in General Relativity (European Mathematical Society Publishing House, Zürich, 2009) arXiv:0805.3880 [gr-qc] .
  8. F. Mellor and I. Moss, Phys. Rev. D 41, 403 (1990).
  9. M. Dafermos and Y. Shlapentokh-Rothman, Commun. Math. Phys. 350, 985 (2017), arXiv:1512.08260 [gr-qc] .
  10. J. Luk and S.-J. Oh, Duke Math. J. 166, 437 (2017), arXiv:1501.04598 [gr-qc] .
  11. R. Herman and W. A. Hiscock, Phys. Rev. D 49, 3946 (1994).
  12. E. Sorkin and T. Piran, Phys. Rev. D 63, 084006 (2001), arXiv:gr-qc/0009095 .
  13. J. S. Schwinger, Phys. Rev. 82, 664 (1951).
  14. C. Klein and J. Zahn, Phys. Rev. D 104, 025009 (2021), arXiv:2104.06005 [gr-qc] .
  15. SCC also holds classically in RN but not in rotating and charged black holes in de Sitter Casals and Marinho (2022).
  16. P. Hintz and A. Vasy, J. Math. Phys. 58, 081509 (2017), arXiv:1512.08004 [math.AP] .
  17. S. Dyatlov, Commun. Math. Phys. 306, 119 (2011), arXiv:1003.6128 [math.AP] .
  18. P. Hintz,   (2021), arXiv:2112.14431 [gr-qc] .
  19. P. Hintz and C. Klein, In preparation  (2023).
  20. See Supplemental Material for details on the background space- time and the calculations of the RSET.
  21. J. Borthwick, Class. Quant. Grav. 35, 215006 (2018), [Erratum: Class.Quant.Grav. 39, 219501 (2022)], arXiv:1805.00243 [gr-qc] .
  22. C. K. M. Klein, Annales Henri Poincare 24, 2401 (2023), arXiv:2206.05073 [gr-qc] .
  23. R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago, USA, 1984).
  24. Note that ⟨⟨T^v⁢φ−⟩⟩UIHsubscriptsuperscriptdelimited-⟨⟩delimited-⟨⟩subscript^𝑇𝑣subscript𝜑IHU\langle\langle\hat{T}_{v\varphi_{-}}\rangle\rangle^{\rm IH}_{{\mathrm{U}}}⟨ ⟨ over^ start_ARG italic_T end_ARG start_POSTSUBSCRIPT italic_v italic_φ start_POSTSUBSCRIPT - end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟩ ⟩ start_POSTSUPERSCRIPT roman_IH end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_U end_POSTSUBSCRIPT is independent of the Killing parameter u𝑢uitalic_u because the Unruh state is stationary.
  25. S. Hollands and R. M. Wald, Commun. Math. Phys. 223, 289 (2001), arXiv:gr-qc/0103074 .
  26. For partial mode stability results of KdS, see Casals and Teixeira da Costa (2022).
  27. W. Li and M. Van de Moortel, arXiv preprint arXiv:2302.00046  (2023).
  28. M. Casals and C. I. S. Marinho, Phys.Rev. D 106, 044060 (2022), arXiv:2006.06483 [gr-qc] .
  29. M. Casals and R. Teixeira da Costa, Communications in Mathematical Physics 394, 797 (2022), arXiv:2105.13329 [gr-qc] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube