Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum state preparation of topological chiral spin liquids via Floquet engineering (2402.14141v4)

Published 21 Feb 2024 in cond-mat.str-el and cond-mat.mes-hall

Abstract: In condensed matter, Chiral Spin Liquids (CSL) are quantum spin analogs of electronic Fractional Quantum Hall states (in the continuum) or Fractional Chern Insulators (on the lattice). As the latter, CSL are remarquable states of matter, exhibiting topological order and chiral edge modes. Preparing CSL on quantum simulators like cold atom platforms is still an open challenge. Here we propose a simple setup on a finite cluster of spin-1/2 located at the sites of a square lattice. Using a Resonating Valence Bond (RVB) non-chiral spin liquid as initial state on which fast time-modulations of strong nearest-neighbor Heisenberg couplings are applied, following different protocols (out-of-equilibrium quench or semi-adiabatic ramping of the drive), we show the slow emergence of such a CSL phase. An effective Floquet dynamics, obtained from a high-frequency Magnus expansion of the drive Hamiltonian, provides a very accurate and simple framework fully capturing the out-of-equilibrium dynamics. An analysis of the resulting prepared states in term of Projected Entangled Pair states gives further insights on the topological nature of the chiral phase. Finally, we discuss possible applications to quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. L. Savary and L. Balents, Quantum spin liquids: a review, Reports on Progress in Physics 80(1), 016502 (2016), 10.1088/0034-4885/80/1/016502.
  2. V. Kalmeyer and R. B. Laughlin, Equivalence of the resonating-valence-bond and fractional quantum Hall states, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095.
  3. Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator, Nature Communications 5, 5137 (2014), 10.1038/ncomms6137.
  4. Global phase diagram and quantum spin liquids in a spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG triangular antiferromagnet, Phys. Rev. B 96, 075116 (2017), 10.1103/PhysRevB.96.075116.
  5. A. Wietek and A. M. Läuchli, Chiral spin liquid and quantum criticality in extended s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG Heisenberg models on the triangular lattice, Phys. Rev. B 95, 035141 (2017), 10.1103/PhysRevB.95.035141.
  6. Non-abelian chiral spin liquid in a quantum antiferromagnet revealed by an iPEPS study, Phys. Rev. B 98, 184409 (2018), 10.1103/PhysRevB.98.184409.
  7. SU⁢(3)1normal-SUsubscript31\mathrm{SU}(3{)}_{1}roman_SU ( 3 ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT chiral spin liquid on the square lattice: A view from symmetric projected entangled pair states, Phys. Rev. Lett. 125, 017201 (2020), 10.1103/PhysRevLett.125.017201.
  8. Abelian su⁢(n)1normal-susubscript𝑛1{\mathrm{su}(n)}_{1}roman_su ( italic_n ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT chiral spin liquids on the square lattice, Phys. Rev. B 104, 235104 (2021), 10.1103/PhysRevB.104.235104.
  9. S.-S. Gong, W. Zhu and D. N. Sheng, Emergent chiral spin liquid: Fractional quantum Hall effect in a Kagome Heisenberg model, Scientific Reports 4, 6317 (2014), 10.1038/srep06317.
  10. Y.-C. He, D. N. Sheng and Y. Chen, Chiral spin liquid in a frustrated anisotropic Kagome Heisenberg model, Phys. Rev. Lett. 112, 137202 (2014), 10.1103/PhysRevLett.112.137202.
  11. Nature of chiral spin liquids on the Kagome lattice, Phys. Rev. B 92, 125122 (2015), 10.1103/PhysRevB.92.125122.
  12. R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21, 467–488 (1982), 10.1007/BF02650179.
  13. String patterns in the doped Hubbard model, Science 365(6450), 251 (2019), 10.1126/science.aav3587.
  14. Spin transport in a Mott insulator of ultracold fermions, Science 363(6425), 383 (2019), 10.1126/science.aat4387.
  15. Observation of a transition between dynamical phases in a quantum degenerate Fermi gas, Science Advances 5(8) (2019), 10.1126/sciadv.aax1568.
  16. Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014), 10.1038/nature13915.
  17. Realizing the symmetry-protected haldane phase in Fermi–Hubbard ladders, Nature 606(7914), 484 (2022), 10.1038/s41586-022-04688-z.
  18. N. Goldman, J. Budich and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nature Physics 12(1), 639 (2016), https://doi.org/10.1038/nphys3803.
  19. Quantum phases of matter on a 256-atom programmable quantum simulator, Nature 595, 227 (2021), 10.1038/s41586-021-03582-4.
  20. Probing topological spin liquids on a programmable quantum simulator, Science 374(6572), 1242 (2021), 10.1126/science.abi8794, https://www.science.org/doi/pdf/10.1126/science.abi8794.
  21. Dynamical preparation of quantum spin liquids in Rydberg atom arrays, Phys. Rev. Lett. 129, 090401 (2022), 10.1103/PhysRevLett.129.090401.
  22. Engineering and probing non-abelian chiral spin liquids using periodically driven ultracold atoms, PRX Quantum 4, 020329 (2023), 10.1103/PRXQuantum.4.020329.
  23. Non-abelian Floquet spin liquids in a digital Rydberg simulator, Phys. Rev. X 13, 031008 (2023), 10.1103/PhysRevX.13.031008.
  24. Synthetic-gauge-field stabilization of the chiral-spin-liquid phase, Phys. Rev. A 93, 061601 (2016), 10.1103/PhysRevA.93.061601.
  25. A. Mitra, Quantum quench dynamics, Annual Review of Condensed Matter Physics 9(1), 245 (2018), 10.1146/annurev-conmatphys-031016-025451, https://doi.org/10.1146/annurev-conmatphys-031016-025451.
  26. Quench dynamics and relaxation of a spin coupled to interacting leads, Phys. Rev. B 103, 125152 (2021), 10.1103/PhysRevB.103.125152.
  27. V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, Proceedings of the National Academy of Sciences 114(30), 7947 (2017), 10.1073/pnas.1703516114, https://www.pnas.org/doi/pdf/10.1073/pnas.1703516114.
  28. S. Czischek, M. Gärttner and T. Gasenzer, Quenches near ising quantum criticality as a challenge for artificial neural networks, Phys. Rev. B 98, 024311 (2018), 10.1103/PhysRevB.98.024311.
  29. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nature Physics 8(4), 325 (2012), 10.1038/nphys2232.
  30. Probing ground-state phase transitions through quench dynamics, Phys. Rev. Lett. 123, 115701 (2019), 10.1103/PhysRevLett.123.115701.
  31. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques, Annales scientifiques de l’École Normale Supérieure (Série 2) 12, 47 (1883), 10.24033/asens.220.
  32. N. Goldman and J. Dalibard, Periodically driven quantum systems: Effective hamiltonians and engineered gauge fields, Phys. Rev. X 4, 031027 (2014), 10.1103/PhysRevX.4.031027.
  33. P. W. Anderson, Resonating valence bonds: A new kind of insulator?, Materials Research Bulletin 8(2), 153 (1973), http://dx.doi.org/10.1016/0025-5408(73)90167-0.
  34. W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649 (1954), 10.1002/cpa.3160070404.
  35. Floquet theory: exponential perturbative treatment, Journal of Physics A: Mathematical and General 34(16), 3379 (2001), 10.1088/0305-4470/34/16/305.
  36. S. Rahav, I. Gilary and S. Fishman, Effective hamiltonians for periodically driven systems, Phys. Rev. A 68, 013820 (2003), 10.1103/PhysRevA.68.013820.
  37. M. Bukov, L. D’Alessio and A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering, Advances in Physics 64(2), 139 (2015), 10.1080/00018732.2015.1055918, https://doi.org/10.1080/00018732.2015.1055918.
  38. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions, Phys. Rev. Letters 101, 250602 (2008), 10.1103/PhysRevLett.101.250602.
  39. Chiral topological spin liquids with projected entangled pair states, Phys. Rev. B 91, 224431 (2015), 10.1103/PhysRevB.91.224431.
  40. D. Poilblanc, N. Schuch and I. Affleck, SU⁢(2)1normal-SUsubscript21\mathrm{SU}(2{)}_{1}roman_SU ( 2 ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT chiral edge modes of a critical spin liquid, Phys. Rev. B 93, 174414 (2016), 10.1103/PhysRevB.93.174414.
  41. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Physics Letters A 146(6), 319 (1990), https://doi.org/10.1016/0375-9601(90)90962-N.
  42. H. F. Trotter, On the product of semi-groups of operators, Proceedings of the American Mathematical Society 10(4), 545 (1959), 10.1090/s0002-9939-1959-0108732-6.
  43. Topological and entanglement properties of resonating valence bond wave functions, Phys. Rev. B 86, 014404 (2012), 10.1103/PhysRevB.86.014404.
  44. Resonating valence bond states in the PEPS formalism, Physical Review B 86(11), 115108 (2012), 10.1103/PhysRevB.86.115108.
  45. J.-Y. Chen and D. Poilblanc, Topological ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT resonating-valence-bond spin liquid on the square lattice, Phys. Rev. B 97, 161107 (2018), 10.1103/PhysRevB.97.161107.
  46. Robustness of critical U(1) spin liquids and emergent symmetries in tensor networks, arXiv preprint arXiv:2008.04833 (2020), 10.48550/ARXIV.2008.04833.
  47. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303(1), 2 (2003), http://dx.doi.org/10.1016/S0003-4916(02)00018-0.
  48. Local models of fractional quantum Hall states in lattices and physical implementation, Nature Communications 4, 2864 (2013), 10.1038/ncomms3864.
  49. D. Poilblanc, Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states, Phys. Rev. B 96, 121118 (2017), 10.1103/PhysRevB.96.121118.
  50. J. Yang, Z. Liu and L. Wang, Ground state phase diagram and the exotic phases in the spin-1/2 square lattice J1subscript𝐽1J_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Jχsubscript𝐽𝜒J_{\chi}italic_J start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT model (2024), arXiv:2401.03434.
  51. Chiral spin liquid and quantum phase diagram of spin-1/2121/21 / 2 J1subscript𝐽1J_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-Jχsubscript𝐽𝜒J_{\chi}italic_J start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT model on the square lattice (2024), arXiv:2401.07461.
  52. Simulating chiral spin liquids with projected entangled-pair states, Phys. Rev. Lett. 129, 177201 (2022), 10.1103/PhysRevLett.129.177201.
  53. Entanglement spectrum and boundary theories with projected entangled-pair states, Phys. Rev. B 83(24), 245134 (2011), 10.1103/PhysRevB.83.245134.
  54. Weak ergodicity breaking from quantum many-body scars, Nat. Phys. 14, 745 (2018).
  55. Exact excited states of nonintegrable models, Phys. Rev. B 98, 235155 (2018), 10.1103/PhysRevB.98.235155.
  56. C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357(6355), 995 (2017), 10.1126/science.aal3837.
  57. High-temperature superfluidity of fermionic atoms in optical lattices, Phys. Rev. Lett. 89, 220407 (2002), 10.1103/PhysRevLett.89.220407.
  58. D. Jaksch and P. Zoller, The cold atom hubbard toolbox, Annals of Physics 315(1), 52 (2005), https://doi.org/10.1016/j.aop.2004.09.010, Special Issue.
  59. Mott insulator of fermionic atoms in an optical lattice, Nature 455, 204 (2008), doi: 10.1038/nature07244.
  60. K. Yang and Y.-Q. Li, Rigorous proof of pseudospin ferromagnetism in two-component bosonic systems with component-independent interactions, International Journal of Modern Physics B 17(07), 1027 (2003), 10.1142/S0217979203018041, https://doi.org/10.1142/S0217979203018041.
  61. Phase diagram of two-component bosons on an optical lattice, New J. Phys. 5, 113 (2003), 10.1088/1367-2630/5/1/113.
  62. A. Browaeys and T. Lahaye, Many-body physics with individually-controlled Rydberg atoms, Nature Physics 16, 132 (2020), https://doi.org/10.1038/s41567-019-0733-z.
  63. Spin liquid phases of large-spin Mott insulating ultracold bosons, Phys. Rev. B 93, 094405 (2016), 10.1103/PhysRevB.93.094405.
  64. Realization of a bosonic antiferromagnet, Nat. Phys. 17, 990–994 (2021).
  65. A cold-atom Fermi-Hubbard antiferromagnet, Nature 545, 462 (2017), 10.1038/nature22362.
  66. Quantum state engineering of a hubbard system with ultracold fermions, Phys. Rev. Lett. 120, 243201 (2018), 10.1103/PhysRevLett.120.243201.
  67. Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy, Phys. Rev. Lett. 125, 010403 (2020), 10.1103/PhysRevLett.125.010403.
  68. Two-dimensional programmable tweezer arrays of fermions, Phys. Rev. Lett. 129, 123201 (2022), 10.1103/PhysRevLett.129.123201.
  69. P. Windpassinger and K. Sengstock, Engineering novel optical lattices, Reports on progress in physics. Physical Society (Great Britain) 76, 086401 (2013), 10.1088/0034-4885/76/8/086401.
  70. PEPS as unique ground states of local hamiltonians, Quant. Inf. Comp. 8, 0650 (2008), 0707.2260.
  71. M. Mambrini, R. Orús and D. Poilblanc, Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124.
  72. A. E. B. Nielsen, J. I. Cirac and G. Sierra, Laughlin spin-liquid states on lattices obtained from conformal field theory, Phys. Rev. Lett. 108, 257206 (2012), 10.1103/PhysRevLett.108.257206.
Citations (2)

Summary

We haven't generated a summary for this paper yet.