Constraints on new physics with (anti)neutrino-nucleon scattering data (2402.14115v2)
Abstract: New physics contributions to the (anti)neutrino-nucleon elastic scattering process can be constrained by precision measurements, with controlled Standard Model uncertainties. In a large class of new physics models, interactions involving charged leptons of different flavor can be related, and the large muon flavor component of accelerator neutrino beams can mitigate the lepton mass suppression that occurs in other low-energy measurements. We employ the recent high-statistics measurement of the cross section for $\bar{\nu}\mu p \to \mu+ n$ scattering on the hydrogen atom by MINERvA to place new confidence intervals on tensor and scalar neutrino-nucleon interactions: $\mathfrak{Re} C_T = -1{+14}{-13} \times 10{-4}$, $|\mathfrak{Im} C_T| \le 1.3 \times 10{-3}$, and $|\mathfrak{Im} C_S| = 45{+13}_{-19} \times 10{-3}$. These results represent a reduction in uncertainty by a factor of $2.1$, $3.1$, and $1.2$, respectively, compared to existing constraints from precision beta decay.
- F. Reines and C. L. Cowan, Phys. Rev. 113, 273 (1959).
- F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803 (2012), arXiv:1203.1669 [hep-ex].
- J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802 (2012), arXiv:1204.0626 [hep-ex].
- Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108, 131801 (2012), arXiv:1112.6353 [hep-ex].
- F. An et al. (JUNO), J. Phys. G 43, 030401 (2016), arXiv:1507.05613 [physics.ins-det].
- K. Eguchi et al. (KamLAND), Phys. Rev. Lett. 90, 021802 (2003), arXiv:hep-ex/0212021.
- A. C. Hayes and P. Vogel, Ann. Rev. Nucl. Part. Sci. 66, 219 (2016), arXiv:1605.02047 [hep-ph].
- H. Almazán et al. (STEREO), Phys. Rev. Lett. 121, 161801 (2018), arXiv:1806.02096 [hep-ex].
- A. P. Serebrov et al. (NEUTRINO-4), Pisma Zh. Eksp. Teor. Fiz. 109, 209 (2019), arXiv:1809.10561 [hep-ex].
- J. Ashenfelter et al. (PROSPECT), Phys. Rev. Lett. 121, 251802 (2018), arXiv:1806.02784 [hep-ex].
- Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 87, 071301 (2001), arXiv:nucl-ex/0106015.
- Q. R. Ahmad et al. (SNO), Phys. Rev. Lett. 89, 011301 (2002), arXiv:nucl-ex/0204008.
- V. Albanese et al. (SNO+), JINST 16, P08059 (2021), arXiv:2104.11687 [physics.ins-det].
- Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003.
- S. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 86, 5651 (2001), arXiv:hep-ex/0103032.
- Y. Fukuda et al. (Super-Kamiokande), Nucl. Instrum. Meth. A 501, 418 (2003).
- Y. Ashie et al. (Super-Kamiokande), Phys. Rev. D 71, 112005 (2005), arXiv:hep-ex/0501064.
- G. Alimonti et al. (Borexino), Nucl. Instrum. Meth. A 600, 568 (2009), arXiv:0806.2400 [physics.ins-det].
- G. Bellini et al. (Borexino), Phys. Rev. D 89, 112007 (2014a), arXiv:1308.0443 [hep-ex].
- G. Bellini et al. (BOREXINO), Nature 512, 383 (2014b).
- J. A. Formaggio and G. P. Zeller, Rev. Mod. Phys. 84, 1307 (2012), arXiv:1305.7513 [hep-ex].
- U. Mosel, Ann. Rev. Nucl. Part. Sci. 66, 171 (2016), arXiv:1602.00696 [nucl-th].
- L. Alvarez-Ruso et al. (NuSTEC), Prog. Part. Nucl. Phys. 100, 1 (2018), arXiv:1706.03621 [hep-ph].
- D. S. Ayres et al. (NOvA), (2007), 10.2172/935497.
- K. Abe et al. (T2K), Nucl. Instrum. Meth. A 659, 106 (2011), arXiv:1106.1238 [physics.ins-det].
- T. Alion et al. (DUNE), (2016), arXiv:1606.09550 [physics.ins-det].
- B. Abi et al. (DUNE), (2020), arXiv:2002.03005 [hep-ex].
- K. Abe et al. (Hyper-Kamiokande), “Hyper-Kamiokande Design Report,” (2016), KEK-PREPRINT-2016-21, ICRR-REPORT-701-2016-1.
- J. C. Bernauer et al. (A1), Phys. Rev. Lett. 105, 242001 (2010), arXiv:1007.5076 [nucl-ex].
- J. C. Bernauer et al. (A1), Phys. Rev. C 90, 015206 (2014), arXiv:1307.6227 [nucl-ex].
- W. Xiong et al., Nature 575, 147 (2019).
- R. Pohl et al., Nature 466, 213 (2010).
- A. Antognini et al., Science 339, 417 (2013).
- C. Alexandrou et al., Phys. Rev. D 103, 034509 (2021), arXiv:2011.13342 [hep-lat].
- W. A. Mann et al., Phys. Rev. Lett. 31, 844 (1973).
- S. J. Barish et al., Phys. Rev. D 16, 3103 (1977).
- K. L. Miller et al., Phys. Rev. D 26, 537 (1982).
- T. Kitagaki et al., Phys. Rev. D 28, 436 (1983).
- P. Brauel et al., Phys. Lett. B 45, 389 (1973).
- V. A. Andreev et al. (MuCap), Phys. Rev. Lett. 110, 012504 (2013), arXiv:1210.6545 [nucl-ex].
- T. Cai et al. (MINERvA), Nature 614, 48 (2023).
- K. Borah, M. Betancourt, R. J. Hill, T. Junk, and O. Tomalak, “Invariant amplitudes, unpolarized cross sections, and polarization asymmetries in (anti)neutrino-nucleon elastic scattering,” To appear (2024).
- C. Llewellyn Smith, Phys. Rept. 3, 261 (1972).
- D. H. Wilkinson, Eur. Phys. J. A 7, 307 (2000).
- M. Day and K. S. McFarland, Phys. Rev. D 86, 053003 (2012), arXiv:1206.6745 [hep-ph].
- B. R. Holstein, Phys. Rev. C 29, 623 (1984).
- J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020).
- J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501 (2005), arXiv:nucl-th/0412056.
- J. C. Hardy and I. S. Towner, Phys. Rev. C 79, 055502 (2009), arXiv:0812.1202 [nucl-ex].
- A. Kozela et al., Phys. Rev. C 85, 045501 (2012), arXiv:1111.4695 [nucl-ex].
- J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015), arXiv:1411.5987 [nucl-ex].
- T. D. Lee and C.-N. Yang, Phys. Rev. 104, 254 (1956).
- S. Borsanyi et al. (BMW), Science 347, 1452 (2015), arXiv:1406.4088 [hep-lat].
- O. Naviliat-Cuncic and M. González-Alonso, Annalen Phys. 525, 600 (2013), arXiv:1304.1759 [hep-ph].
- M. González-Alonso and J. Martin Camalich, JHEP 12, 052 (2016), arXiv:1605.07114 [hep-ph].
- J. Baron et al. (ACME), Science 343, 269 (2014), arXiv:1310.7534 [physics.atom-ph].
- Wolfram Research, Inc., “Mathematica, Version 12.2.0.0,” (2022), Champaign, IL.
- F. James and M. Roos, Comput. Phys. Commun. 10, 343 (1975).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.