Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

On dualities of paired quantum Hall bilayer states at $ν_T = \frac{1}{2} + \frac{1}{2}$ (2402.14088v2)

Published 21 Feb 2024 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.supr-con

Abstract: Density-balanced, widely separated quantum Hall bilayers at $\nu_T = 1$ can be described as two copies of composite Fermi liquids (CFLs). The two CFLs have interlayer weak-coupling BCS instabilities mediated by gauge fluctuations, the resulting pairing symmetry of which depends on the CFL hypothesis used. If both layers are described by the conventional Halperin-Lee-Read (HLR) theory-based composite electron liquid (CEL), the dominant pairing instability is in the $p+ip$ channel; whereas if one layer is described by CEL and the other by a composite hole liquid (CHL, in the sense of anti-HLR), the dominant pairing instability occurs in the $s$-wave channel. Using the Dirac composite fermion (CF) picture, we show that these two pairing channels can be mapped onto each other by particle-hole (PH) transformation. Furthermore, we derive the CHL theory as the non-relativistic limit of the PH-transformed massive Dirac CF theory. Finally, we prove that an effective topological field theory for the paired CEL-CHL in the weak-coupling limit is equivalent to the exciton condensate phase in the strong-coupling limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. H. A. Kramers and G. H. Wannier, “Statistics of the two-dimensional ferromagnet. part i,” Phys. Rev. 60, 252 (1941).
  2. J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51, 659 (1979).
  3. J. Maldacena, International Journal of Theoretical Physics 38, 1113 (1999).
  4. E. Witten, “Anti de sitter space and holography,”  (1998), arXiv:hep-th/9802150 [hep-th] .
  5. A. J. Beekman, J. Nissinen, K. Wu, K. Liu, R.-J. Slager, Z. Nussinov, V. Cvetkovic,  and J. Zaanen, “Dual gauge field theory of quantum liquid crystals in two dimensions,” Physics Reports 683, 1 (2017), dual gauge field theory of quantum liquid crystals in two dimensions.
  6. N. Seiberg, T. Senthil, C. Wang,  and E. Witten, “A duality web in 2+1212+12 + 1 dimensions and condensed matter physics,” Annals of Physics 374, 395 (2016).
  7. C. Wang and T. Senthil, “Dual dirac liquid on the surface of the electron topological insulator,” Phys. Rev. X 5, 041031 (2015).
  8. I. Sodemann, I. Kimchi, C. Wang,  and T. Senthil, “Composite fermion duality for half-filled multicomponent landau levels,” Phys. Rev. B 95, 085135 (2017).
  9. B. I. Halperin, “Theory of the quantized hall conductance,” Helv. Phys. Acta 56, 75 (1983).
  10. I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer,  and K. W. West, “Resonantly enhanced tunneling in a double layer quantum hall ferromagnet,” Phys. Rev. Lett. 84, 5808 (2000).
  11. J. P. Eisenstein and A. H. MacDonald, “Bose–einstein condensation of excitons in bilayer electron systems,” Nature 432, 691 (2004).
  12. B. I. Halperin, Patrick A. Lee,  and Nicholas Read, “Theory of the half-filled landau level,” Phys. Rev. B 47, 7312 (1993).
  13. N. E. Bonesteel, “Compressible phase of a double-layer electron system with total landau-level filling factor 1/2,” Phys. Rev. B 48, 11484 (1993).
  14. N. E. Bonesteel, I. A. McDonald,  and C. Nayak, “Gauge fields and pairing in double-layer composite fermion metals,” Phys. Rev. Lett. 77, 3009 (1996).
  15. T. Morinari, “Composite-fermion pairing in bilayer quantum hall systems,” Phys. Rev. B 59, 7320 (1999).
  16. Y. B. Kim, C. Nayak, E. Demler, N. Read,  and S. Das Sarma, “Bilayer paired quantum hall states and coulomb drag,” Phys. Rev. B 63, 205315 (2001).
  17. S. H. Simon, E. H. Rezayi,  and M. V. Milovanovic, “Coexistence of composite bosons and composite fermions in ν=12+12𝜈1212\nu=\frac{1}{2}+\frac{1}{2}italic_ν = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG quantum hall bilayers,” Phys. Rev. Lett. 91, 046803 (2003).
  18. N. Shibata and D. Yoshioka, “Ground state of ν=1𝜈1\nu=1italic_ν = 1 bilayer quantum hall systems,” Journal of the Physical Society of Japan 75, 043712 (2006).
  19. R. L. Doretto, A. O. Caldeira,  and M. C. Smith, “Bosonization approach for bilayer quantum hall systems at νT=1subscript𝜈𝑇1{\nu}_{T}=1italic_ν start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = 1,” Phys. Rev. Lett. 97, 186401 (2006).
  20. Z. Zhu, L. Fu,  and D. N. Sheng, “Numerical study of quantum hall bilayers at total filling νT=1subscript𝜈𝑇1{\nu}_{T}=1italic_ν start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = 1: A new phase at intermediate layer distances,” Phys. Rev. Lett. 119, 177601 (2017).
  21. B. Lian and S.-C. Zhang, ‘‘Wave function and emergent su(2) symmetry in the νT=1subscript𝜈𝑇1{\nu}_{T}=1italic_ν start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = 1 quantum hall bilayer,” Phys. Rev. Lett. 120, 077601 (2018).
  22. R. Cipri and N. E. Bonesteel, “Gauge fluctuations and interlayer coherence in bilayer composite fermion metals,” Phys. Rev. B 89, 085109 (2014).
  23. H. Isobe and L. Fu, “Interlayer pairing symmetry of composite fermions in quantum hall bilayers,” Phys. Rev. Lett. 118, 166401 (2017).
  24. G. Möller, S. H. Simon,  and E. H. Rezayi, “Paired composite fermion phase of quantum hall bilayers at ν=12+12𝜈1212\nu=\frac{1}{2}+\frac{1}{2}italic_ν = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG,” Phys. Rev. Lett. 101, 176803 (2008).
  25. G. Möller, S. H. Simon,  and E. H. Rezayi, “Trial wave functions for ν=12+12𝜈1212\nu=\frac{1}{2}+\frac{1}{2}italic_ν = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG quantum hall bilayers,” Phys. Rev. B 79, 125106 (2009).
  26. Xiaomeng L., J. I. A. Li, K. Watanabe, T. Taniguchi, J. Hone, B. I. Halperin, P. Kim,  and C. R. Dean, “Crossover between strongly coupled and weakly coupled exciton superfluids,” Science 375, 205 (2022).
  27. J. P. Eisenstein, L. N. Pfeiffer,  and K. W. West, “Precursors to exciton condensation in quantum hall bilayers,” Phys. Rev. Lett. 123, 066802 (2019).
  28. G. Wagner, D. X. Nguyen, S. H. Simon,  and B. I. Halperin, “s𝑠sitalic_s-wave paired electron and hole composite fermion trial state for quantum hall bilayers with ν=1𝜈1\nu=1italic_ν = 1,” Phys. Rev. Lett. 127, 246803 (2021).
  29. L. Rüegg, G. Chaudhary,  and R.-J. Slager, “Pairing of composite electrons and composite holes in νT=1subscript𝜈𝑇1{\nu}_{T}=1italic_ν start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT = 1 quantum hall bilayers,” Phys. Rev. Res. 5, L042022 (2023).
  30. Tevž Lotrič and Steven H. Simon, “Chern-simons-modified-rpa-eliashberg theory of the ν=1/2+1/2𝜈1212\nu=1/2+1/2italic_ν = 1 / 2 + 1 / 2 quantum hall bilayer,”  (2023), arXiv:2309.08329 [cond-mat.str-el] .
  31. D. T. Son, “Is the composite fermion a dirac particle?” Phys. Rev. X 5, 031027 (2015).
  32. C. Wang, N. R. Cooper, B. I. Halperin,  and A. Stern, “Particle-hole symmetry in the fermion-chern-simons and dirac descriptions of a half-filled landau level,” Phys. Rev. X 7, 031029 (2017).
  33. X.-G. Wen and A. Zee, “Neutral superfluid modes and “magnetic” monopoles in multilayered quantum hall systems,” Phys. Rev. Lett. 69, 1811 (1992).
  34. X.-G. Wen and A. Zee, “Tunneling in double-layered quantum hall systems,” Phys. Rev. B 47, 2265 (1993).
  35. M. Barkeshli, M. Mulligan,  and M. P. A. Fisher, “Particle-hole symmetry and the composite fermi liquid,” Phys. Rev. B 92, 165125 (2015).
  36. S. M. Girvin, “Particle-hole symmetry in the anomalous quantum hall effect,” Phys. Rev. B 29, 6012 (1984).
  37. E. H. Rezayi and F. D. M. Haldane, “Incompressible paired hall state, stripe order, and the composite fermion liquid phase in half-filled landau levels,” Phys. Rev. Lett. 84, 4685 (2000).
  38. A. C. Balram and J. K. Jain, “Nature of composite fermions and the role of particle-hole symmetry: A microscopic account,” Phys. Rev. B 93, 235152 (2016).
  39. S. D. Geraedts, M. P. Zaletel, R. S. K. Mong, M. A. Metlitski, A. Vishwanath,  and O. I. Motrunich, “The half-filled landau level: The case for dirac composite fermions,” Science 352, 197 (2016).
  40. Supplemental Material .
  41. L. Fu and C. L. Kane, “Superconducting proximity effect and majorana fermions at the surface of a topological insulator,” Phys. Rev. Lett. 100, 096407 (2008).
  42. T. H. Hansson, V. Oganesyan,  and S. L. Sondhi, “Superconductors are topologically ordered,” Ann. of Phys. 313, 497 (2004).
  43. K. Yang, “Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum hall systems at ν=1𝜈1\mathit{\nu}\phantom{\rule{0.0pt}{0.0pt}}=\phantom{\rule{0.0pt}{0.0pt}}1italic_ν = 1,” Phys. Rev. Lett. 87, 056802 (2001).
  44. M. Barkeshli and J. McGreevy, “Continuous transitions between composite fermi liquid and landau fermi liquid: A route to fractionalized mott insulators,” Phys. Rev. B 86, 075136 (2012).
  45. V. Bargmann, “On the representations of the rotation group,” Rev. Mod. Phys. 34, 829 (1962).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube