Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Geometry-induced wavefunction collapse (2402.13980v2)

Published 21 Feb 2024 in quant-ph

Abstract: When a quantum particle moves in a curved space, a geometric potential can arise. In spite of a long history of extensive theoretical studies, to experimentally observe the geometric potential remains to be a challenge. What are the physically observable consequences of such a geometric potential? Solving the Schrodinger equation on a truncated conic surface, we uncover a class of quantum scattering states that bear a strong resemblance with the quasi-resonant states associated with atomic collapse about a Coulomb impurity, a remarkable quantum phenomenon in which an infinite number of quasi-resonant states emerge. A characteristic defining feature of such collapse states is the infinite oscillations of the local density of states (LDOS) about the zero energy point separating the scattering from the bound states. The emergence of such states in the curved (Riemannian) space requires neither a relativistic quantum mechanism nor any Coulomb impurity: they have zero angular momentum and their origin is purely geometrical - henceforth the term geometry-induced wavefunction collapse. We establish the collapsing nature of these states through a detailed comparative analysis of the behavior of the LDOS for both the zero and finite angular-momentum states as well as the corresponding classical picture. Potential experimental schemes to realize the geometry-induced collapse states are articulated. Not only has our study uncovered an intrinsic connection between the geometric potential and atomic collapse, it also provides a method to experimentally observe and characterize geometric potentials arising from different subfields of physics. For example, in nanoscience and nanotechnology, curved geometry has become increasingly common. Our finding suggests that wavefunction collapse should be an important factor of consideration in designing and developing nanodevices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. H. Jensen and H. Koppe, Quantum mechanics with constraints, Ann. Phys. 63, 586 (1971).
  2. R. C. T. da Costa, Quantum mechanics of a constrained particle, Phys. Rev. A 23, 1982 (1981).
  3. G. H. Shortley, The inverse-cube central force field in quantum mechanics, Physical Review 38, 120 (1931).
  4. A. Shytov, M. Katsnelson, and L. Levitov, Atomic collapse and quasi–rydberg states in graphene, Phys. Rev. Lett. 99, 246802 (2007a).
  5. C. Filgueiras and F. Moraes, On the quantum dynamics of a point particle in conical space, Ann. Phys. 323, 3150 (2008).
  6. A. Nicholson, Bound states and scattering in an r? 2 potential, Australian Journal of Physics 15, 174 (1962).
  7. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1981).
  8. S. A. Coon and B. R. Holstein, Anomalies in quantum mechanics: the 1/r 2 potential, American Journal of Physics 70, 513 (2002).
  9. H.-W. Hammer and B. G. Swingle, On the limit cycle for the 1/r2 potential in momentum space, Annals of Physics 321, 306 (2006).
  10. K. Case, Singular potentials, Physical Review 80, 797 (1950).
  11. Y. Nishida, Efimovian states of three charged particles, Physical Review A 105, L010802 (2022).
  12. V. Efimov, Energy levels arising from resonant two-body forces in a three-body system, Physics Letters B 33, 563 (1970).
  13. V. Efimov, Energy levels of three resonantly interacting particles, Nuclear Physics A 210, 157 (1973).
  14. A. M. Perelomov and V. S. Popov, “fall to the center” in quantum mechanics, Teoreticheskaya i Matematicheskaya Fizika 4, 48 (1970).
  15. S. Alliluev, The problem of collapse to the center in quantum mechanics, Sov. Phys. JETP 34, 8 (1972).
  16. I. Pomeranchuk and Y. Smorodinsky, About the energy levels of systems with z>137𝑧137z>137italic_z > 137, J. Phys. USSR 9, 97 (1945).
  17. Y. B. Zeldovich and V. S. Popov, Electronic structure of superheavy atoms, Sov. Phys. Usp. 14, 673 (1972).
  18. W. Greiner, Quantum Electrodynamics of Strong Fields (Springer, 1985).
  19. C. Filgueiras, E. Silva, and F. Andrade, Nonrelativistic quantum dynamics on a cone with and without a constraining potential, J. Math. Phys. 53, 122106 (2012).
  20. R. Salazar and G. Tellez, Constrained quantum mechanics: chaos in non-planar billiards, Euro. J. Phys. 33, 965 (2012).
  21. Q.-D. Jiang and A. Balatsky, Geometric induction in chiral superfluids, arXiv preprint arXiv:2112.04528  (2021).
  22. T. H. Boyer, Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential, Ame. J. Phys. 72, 992 (2004).
  23. A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, Vacuum polarization and screening of supercritical impurities in graphene, Phys. Rev. Lett. 99, 236801 (2007b).
  24. A. Shytov, M. Katsnelson, and L. Levitov, Atomic collapse and quasi-Rydberg states in graphene, Phys. Rev. Lett. 99, 246802 (2007c).
  25. M. Fogler, D. Novikov, and B. I. Shklovskii, Screening of a hypercritical charge in graphene, Phys. Rev. B 76, 233402 (2007).
  26. V. M. Pereira, J. Nilsson, and A. C. Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99, 166802 (2007a).
  27. D. Novikov, Elastic scattering theory and transport in graphene, Phys. Rev. B 76, 245435 (2007).
  28. C. Beenakker, Colloquium: Andreev reflection and klein tunneling in graphene, Reviews of Modern Physics 80, 1337 (2008).
  29. B. S. DeWitt, Dynamical theory in curved spaces. I. A review of the classical and quantum action principles, Rev. Mod. Phys. 29, 377 (1957).
  30. M. V. Entin and L. I. Magarill, Spin-orbit interaction of electrons on a curved surface, Phys. Rev. B 64, 085330 (2001).
  31. J. Gravesen and M. Willatzen, Eigenstates of Möbius nanostructures including curvature effects, Phys. Rev. A 72, 032108 (2005).
  32. E. Zhang, S. Zhang, and Q. Wang, Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions, Phys. Rev. B 75, 085308 (2007).
  33. G. Ferrari and G. Cuoghi, Schrödinger equation for a particle on a curved surface in an electric and magnetic field, Phys. Rev. Lett. 100, 230403 (2008).
  34. H. Shima, H. Yoshioka, and J. Onoe, Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders, Phys. Rev. B 79, 201401 (2009).
  35. C. de Lima Ribeiro, C. Furtado, and F. Moraes, Bound states in the dynamics of a dipole in the presence of a conical defect, Modern Physics Letters A 20, 1991 (2005).
  36. T. Dunster, Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter, SIAM J. Math. Ana. 21, 995 (1990).
  37. V. M. Pereira, J. Nilsson, and A. C. Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99, 166802 (2007b).
  38. G. Binnig and H. Rohrer, Scanning tunneling microscopy—from birth to adolescence, Rev. Mod. Phys. 59, 615 (1987).
  39. P. K. Hansma and J. Tersoff, Scanning tunneling microscopy, J. Appl. Phys. 61, R1 (1987).
  40. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Physical Review B 31, 805 (1985).
  41. J. Li, W.-D. Schneider, and R. Berndt, Local density of states from spectroscopic scanning-tunneling-microscope images: Ag (111), Physical Review B 56, 7656 (1997).
  42. P. E. Lammert and V. H. Crespi, Topological phases in graphitic cones, Phys. Rev. Lett. 85, 5190 (2000).
  43. M. Ge and K. Sattler, Observation of fullerene cones, Chem. Phys. Lett. 220, 192 (1994).
  44. G. Zhang, X. Jiang, and E. Wang, Tubular graphite cones, Science 300, 472 (2003).
  45. M. Berry, The geometric phase, Sci. Ame. 259, 46 (1988).
  46. J. Anandan, The geometric phase, Nature 360, 307 (1992).
  47. J. Anandan, J. Christian, and K. Wanelik, Resource letter GPP-1: Geometric phases in physics, Ame. J. Phys. 65, 180 (1997).
  48. S. Azevedo and F. Moraes, Two-dimensional scattering by disclinations in monolayer graphite, J. Phys. Cond. Matt. 12, 7421 (2000).
  49. J.-C. Charlier and G.-M. Rignanese, Electronic structure of carbon nanocones, Phys. Rev. Lett. 86, 5970 (2001).
  50. S. P. Jordan and V. H. Crespi, Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object, Phys. Rev. Lett. 93, 255504 (2004).
  51. P. E. Lammert and V. H. Crespi, Graphene cones: Classification by fictitious flux and electronic properties, Phys. Rev. B 69, 035406 (2004).
  52. C. Furtado, F. Moraes, and A. d. M. Carvalho, Geometric phases in graphitic cones, Phys. Lett. A 372, 5368 (2008).
  53. D. Akay, The effect of tilted magnetic field in graphene cone, Procedia Soc. Behav. Sci. 195, 2913 (2015).
  54. R. Pincak, J. Smotlacha, and M. Pudlak, Calculation of the electronic structure near the tip of a graphitic nanocone, Physica B Cond. Matt. 441, 58 (2014).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com