Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Complexity Growth and the Krylov-Wigner function (2402.13694v1)

Published 21 Feb 2024 in hep-th and quant-ph

Abstract: For any state in a $D$-dimensional Hilbert space with a choice of basis, one can define a discrete version of the Wigner function -- a quasi-probability distribution which represents the state on a discrete phase space. The Wigner function can, in general, take on negative values, and the amount of negativity in the Wigner function has an operational meaning as a resource for quantum computation. In this note, we study the growth of Wigner negativity for a generic initial state under time evolution with chaotic Hamiltonians. We introduce the Krylov-Wigner function, i.e., the Wigner function defined with respect to the Krylov basis (with appropriate phases), and show that this choice of basis minimizes the early time growth of Wigner negativity in the large $D$ limit. We take this as evidence that the Krylov basis (with appropriate phases) is ideally suited for a dual, semi-classical description of chaotic quantum dynamics at large $D$. We also numerically study the time evolution of the Krylov-Wigner function and its negativity in random matrix theory for an initial pure state. We observe that the negativity broadly shows three phases: it rises gradually for a time of $O(\sqrt{D})$, then hits a sharp ramp and finally saturates close to its upper bound of $\sqrt{D}$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.