Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum control for the Zeno effect with noise (2402.13325v3)

Published 20 Feb 2024 in quant-ph

Abstract: The quantum Zeno effect is a distinctive phenomenon in quantum mechanics, describing the nontrivial effect of frequent projective measurements on hindering the evolution of a quantum system. However, when subjected to environmental noise, the quantum system may dissipate, and the quantum Zeno effect no longer works. This research starts from the physical mechanism for the decay of the quantum Zeno effect in the presence of noise and investigates the effect of coherent quantum controls on mitigating the decrease of the survival probability that the system stays in the initial state induced by the noise. We derive the decay rate of the survival probability with and without coherent quantum controls in general, and show that when the frequency of the projective measurements is large but finite, proper coherent controls by sufficiently strong Hamiltonians can be designed to decrease the decay rate of the survival probability. A two-level quantum system suffering from typical unitary and nonunitary noise is then considered to demonstrate the effect of the proposed coherent quantum control scheme in protecting the quantum Zeno effect against the noise. The decay rate of the survival probability is obtained in the presence of noise, and the control Hamiltonian is further optimized analytically to minimize the decay rate by a variational approach. The evolution paths of the quantum system with the optimal coherent controls are illustrated numerically for different scenarios to explicitly show how the coherent control scheme works in lowering the decay of survival probability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. Aristotle, Physics IV, Vol. 239b10.
  2. J. v. Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, 1932).
  3. A. Beskow and J. Nilsson, Ark. Fys., 34: 561-9(1967).  (1967).
  4. B. Nagels, L. J. F. Hermans, and P. L. Chapovsky, Physical Review Letters 79, 3097 (1997), publisher: American Physical Society.
  5. P. Exner and T. Ichinose, Annales Henri Poincaré 6, 195 (2005).
  6. P. Exner and T. Ichinose, Annales Henri Poincaré 22, 1669 (2021).
  7. B. Misra and E. C. G. Sudarshan, Journal of Mathematical Physics 18, 756 (1976).
  8. K. Koshino and A. Shimizu, Physics Reports 412, 191 (2005).
  9. P. Facchi and S. Pascazio, Journal of Physics A: Mathematical and Theoretical 41, 493001 (2008).
  10. B. Kaulakys and V. Gontis, Physical Review A 56, 1131 (1997), publisher: American Physical Society.
  11. A. G. Kofman and G. Kurizki, Nature 405, 546 (2000), number: 6786 Publisher: Nature Publishing Group.
  12. P. Facchi, H. Nakazato, and S. Pascazio, Physical Review Letters 86, 2699 (2001), publisher: American Physical Society.
  13. P. Facchi and S. Pascazio, Physical Review Letters 89, 080401 (2002), publisher: American Physical Society.
  14. L. Viola, Physical Review A 58, 2733 (1998).
  15. L. Viola, E. Knill, and S. Lloyd, Physical Review Letters 82, 2417 (1999), publisher: American Physical Society.
  16. L.-M. Duan and G.-C. Guo, Physics Letters A 261, 139 (1999).
  17. P. Facchi, D. A. Lidar, and S. Pascazio, Physical Review A 69, 032314 (2004), publisher: American Physical Society.
  18. L. S. Schulman, Physical Review A 57, 1509 (1998), publisher: American Physical Society.
  19. H. Nakazato and S. Pascazio, Journal of Superconductivity 12, 843 (1999).
  20. R. Ruskov, A. N. Korotkov, and A. Mizel, Physical Review B 73, 085317 (2006), publisher: American Physical Society.
  21. P. Kumar, A. Romito, and K. Snizhko, Physical Review Research 2, 043420 (2020), publisher: American Physical Society.
  22. B. Elattari and S. A. Gurvitz, Physical Review Letters 84, 2047 (2000), publisher: American Physical Society.
  23. A. Hahn, D. Burgarth, and K. Yuasa, New Journal of Physics 24, 063027 (2022), publisher: IOP Publishing.
  24. D. Braun, Dissipative Quantum Chaos and Decoherence, softcover reprint of the original 1st ed. 2001 edition ed. (Springer, 2013).
  25. S. Gurvitz, Quantum Information Processing 2, 15 (2003).
  26. C. A. E. Guerra, D. V. Villamizar, and L. G. C. Rego, Physical Review A 86, 023411 (2012), publisher: American Physical Society.
  27. L.-M. Duan and G.-C. Guo, Physical Review A 57, 737 (1998a), publisher: American Physical Society.
  28. A. Shabani and D. A. Lidar, Physical Review A 72, 042303 (2005), publisher: American Physical Society.
  29. D. A. Lidar and K. Birgitta Whaley, in Irreversible Quantum Dynamics, Lecture Notes in Physics, edited by F. Benatti and R. Floreanini (Springer, Berlin, Heidelberg, 2003) pp. 83–120.
  30. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Physical Review A 37, 4950 (1988), publisher: American Physical Society.
  31. R. S. Judson and H. Rabitz, Physical Review Letters 68, 1500 (1992), publisher: American Physical Society.
  32. P. W. Shor, Physical Review A 52, R2493 (1995), publisher: American Physical Society.
  33. A. M. Steane, Physical Review Letters 77, 793 (1996), publisher: American Physical Society.
  34. L. Vaidman, L. Goldenberg, and S. Wiesner, Physical Review A 54, R1745 (1996), publisher: American Physical Society.
  35. L.-M. Duan and G.-C. Guo, Physical Review A 57, 2399 (1998b), publisher: American Physical Society.
  36. C.-P. Yang, S.-I. Chu, and S. Han, Physical Review A 66, 034301 (2002), publisher: American Physical Society.
  37. S. Patsch, S. Maniscalco, and C. P. Koch, Physical Review Research 2, 023133 (2020), publisher: American Physical Society.
  38. V. Popkov and C. Presilla, Physical Review Letters 126, 190402 (2021), publisher: American Physical Society.
  39. G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
  40. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Journal of Mathematical Physics 17, 821 (2008).
  41. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  42. D. Chruściński and S. Pascazio, Open Systems & Information Dynamics 24, 1740001 (2017), publisher: World Scientific Publishing Co.
  43. ´. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction (Springer, Berlin, Heidelberg, 2012).
  44. H. Zheng, S. Y. Zhu, and M. S. Zubairy, Physical Review Letters 101, 200404 (2008), publisher: American Physical Society.
  45. J. A. Gyamfi, European Journal of Physics 41, 063002 (2020), publisher: IOP Publishing.
  46. W. Yang and R.-B. Liu, Physical Review Letters 101, 180403 (2008), publisher: American Physical Society.
  47. R. M. Wilcox, Journal of Mathematical Physics 8, 962 (1967).
  48. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  49. M. S. Bazaraa, Nonlinear Programming: Theory and Algorithms, 3rd ed. (Wiley Publishing, 2013).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.